RESUMEN
Temperature can interact with chemical pesticides and modulate their toxicity. Sublethal exposure to pesticides is known to trigger hormetic responses in pests. However, the simultaneous effects of temperature and sublethal exposure to single or mixture-based insecticides on the insects' stimulatory responses are not frequently considered in toxicological studies. Here we investigated the combined effects of temperature on the lethal and sublethal responses of the green peach aphid Myzus persicae after exposure to commercial formulations of a neonicotinoid (thiamethoxam) and a pyrethroid (lambda-cyhalothrin) and their mixture. Firstly, the concentration-response curves of the insecticides were determined under four temperatures (15 °C, 20 °C, 25 °C, and 28 °C) by the leaf dipping method. Subsequently, the sublethal concentrations C0, CL1, CL5, CL10, CL15, CL20, and CL30 were selected to assess sublethal effects on aphids' longevity and reproduction under the same temperatures. The results showed that the mixture of thiamethoxam + lambda-cyhalothrin caused greater toxicity to aphids compared to the formulations with each active ingredient alone and that the toxicity was higher at elevated temperatures. Furthermore, the exposure to low concentrations of the mixture (thiamethoxam + lambda-cyhalothrin) and the separated insecticides induced stimulatory responses in the longevity and fecundity of exposed aphid females, but the occurrence of such hormetic responses depended on the insecticide type, its sublethal concentration, and the temperature as well as their interactions.
Asunto(s)
Áfidos , Insecticidas , Nitrilos , Piretrinas , Temperatura , Tiametoxam , Animales , Áfidos/efectos de los fármacos , Áfidos/fisiología , Insecticidas/toxicidad , Piretrinas/toxicidad , Nitrilos/toxicidad , Tiametoxam/toxicidad , Neonicotinoides/toxicidad , Nitrocompuestos/toxicidad , Reproducción/efectos de los fármacos , HormesisRESUMEN
Insect cuticle acts as a first line of defense and a physical protective barrier against entomopathogens. Chitin biosynthesis pathway plays a crucial role in chitin formation in the cuticle of insects. Glucosamine-6-phosphate N-acetyltransferase (GNA) is a key enzyme in insect chitin biosynthesis that regulate the chitin formation. However, how GNA-mediated cuticle metabolism influences virulence of entomopathogenic fungi is still unknown. In this study, CmGNA gene was cloned and characterized from the rice leaffolder Cnaphalocrocis medinalis. The CmGNA contains an open read frame (ORF) 600 nucleotides, encoding 199 amino acids with an isoelectric point of 8.65 and a molecular weight of 22.30 kDa. The expression profile showed that CmGNA was highly expressed in 4th instar larvae and in the cuticle. Here, we also reported the impact of CmGNA gene and entomopathogenic fungi, Metarhizium anisopliae and Beauveria bassiana, on expression pattern of chitin biosynthesis genes, feeding behavior, survival rate and average body weight of infected larvae, phenotypic deformities, rate of pupation, and adult emergence. Our results showed that knockdown of CmGNA and application of M. anisopliae and B. bassiana three days after RNA interference (RNAi) significantly decreased the expression of CmGNA and other associated genes, reduced feeding efficiency and survival rate, and caused loss of average body weight, less rate of pupation and adult emergence of infected larvae. Knockdown of CmGNA gene also increased the lethality of larvae caused by M. anisopliae and B. bassiana and resulted in significantly phenotypic deformities of infected larvae. Our findings illustrated that RNAi-mediated CmGNA knockdown disturbed the chitin synthesis genes that led to enhancing the virulence of M. anisopliae and B. bassiana, which can provide us new insights to develop novel biocontrol strategies against C. medinalis.
Asunto(s)
Beauveria , Glucosamina 6-Fosfato N-Acetiltransferasa , Larva , Metarhizium , Mariposas Nocturnas , Interferencia de ARN , Animales , Beauveria/patogenicidad , Beauveria/genética , Metarhizium/patogenicidad , Metarhizium/genética , Virulencia , Glucosamina 6-Fosfato N-Acetiltransferasa/genética , Glucosamina 6-Fosfato N-Acetiltransferasa/metabolismo , Mariposas Nocturnas/microbiología , Larva/microbiología , Quitina/metabolismo , Proteínas de Insectos/genética , Proteínas de Insectos/metabolismo , Técnicas de Silenciamiento del Gen , Control Biológico de VectoresRESUMEN
Nanotechnology is a new field in the pesticide industry. Nanopesticides represent an emerging technological tool that offers a range of benefits including increased efficacy, durability, and reduction in the amounts of used active ingredients. However, due to the lack of studies on the toxicity and the sublethal effects on pests and natural enemies, the extent of action and fate of these nanopesticdes is still not fully understood limitting thus their wide use. In this study, we encapsulated the pirimicarb insecticide using nanostructured lipid carriers (NLC) and investigated the toxicity and sublethal effects (LC25) of the resulting nanocapsules against the cabbage aphid, Brevicoryne brassicae (Linnaeus) (Hemiptera: Aphididae) and its natural enemy the green lacewings Chrysoperla carnea (Stephens) (Neuroptera: Chrysopidae). Nanoencapsulation of pirimicarb enhanced 12.6-fold its toxicity to cabbage aphids compared to its commercial formulation. Furthermore, analysis of the age-stage, two-sex life table showed that negative effects on the B. brassicae aphid population growth were observed on F0 and F1 generations when aphids of parental (F0) generation were exposed to subelethal dose (LC25) of both formulations of pirimicarb. However, negative effects from sublethal exposure to the commercial and nanoformulated pirimicarb resulted in significant reduction on the net reproductive rate, intrinsic rate of natural increase, and finite rate of increase of the green lacewings C. carnea. Our findings indicate that the approaches and assumptions used to assess the risks of conventional insecticides may not apply for nanopesticides. Further research is still needed to better understand the environmental impact of these compounds.
Asunto(s)
Áfidos , Insecticidas , Animales , Carbamatos , Insectos , Insecticidas/toxicidad , PirimidinasRESUMEN
Environmental pollutants, such as insecticides, can alter the equilibrium of aquatic ecosystems, particularly those closely located to human occupations. The use of such anthropogenic compounds frequently results in the selection of resistant individuals. However, how the underlying insecticide resistance mechanisms interplay with the abilities of the resistant individuals to cope with other environmental challenges (e.g., predators) has not received adequate attention. Here, we evaluated whether resistance to pyrethroid insecticides in larvae of the yellow fever mosquito, Aedes aegypti (Diptera: Culicidae), would affect their abilities to survive other environmental challenges. We assessed the susceptibilities of the pyrethroid-resistant larvae to other insecticides (i.e., the oxadiazine indoxacarb and juvenile hormone mimic pyriproxyfen) and determined the activities of potential detoxification enzymes. Finally, we also recorded potential alterations in larva swimming behavior in the presence of predators, such as the water bug Belostoma anurum (Hemiptera: Belostomatidae). Our results revealed that high pyrethroid resistance was associated with moderate resistance to the other two insecticides. Furthermore, this multiple resistance was associated with higher detoxification activity by glutathione-S-transferases and general esterases. Interestingly, in comparison with insecticide-susceptible larvae, the pyrethroid-resistant larvae not only swam for longer periods and distances, but also took longer to be captured by B. anurum nymphs. Collectively, our findings revealed increased abilities to survive natural environmental challenges (e.g., predatory attacks) in mosquito larvae that express physiological and behavioral changes associated with multiple resistance to insecticides.
Asunto(s)
Aedes/efectos de los fármacos , Insecticidas/farmacología , Larva/efectos de los fármacos , Animales , Bioensayo , Resistencia a los Insecticidas , Nitrilos/farmacología , Piretrinas/farmacologíaRESUMEN
Plant essential oils have been suggested as a suitable alternative for controlling stored pests worldwide. However, very little is known about the physiological or behavioral responses induced by these compounds in insect populations that are resistant to traditional insecticides. Thus, this investigation evaluated the toxicity (including the impacts on population growth) as well as the locomotory and respiratory responses induced by clove, Syzygium aromaticum L., and cinnamon, Cinnamomum zeylanicum L., essential oils in Brazilian populations of the maize weevil Sitophilus zeamais. We used populations that are resistant to phosphine and pyrethroids (PyPhR), only resistant to pyrethroids (PyR1 and PyR2) or susceptible to both insecticide types (SUS). The PyPhR population was more tolerant to cinnamon essential oil, and its population growth rate was less affected by both oil types. Insects from this population reduced their respiratory rates (i.e., CO2 production) after being exposed to both oil types and avoided (in free choice-experiments) or reduced their mobility on essential oil-treated surfaces. The PyR1 and PyR2 populations reduced their respiratory rates, avoided (without changing their locomotory behavior in no-choice experiments) essential oil-treated surfaces and their population growth rates were severely affected by both oil types. Individuals from SUS population increased their mobility on surfaces that were treated with both oil types and showed the highest levels of susceptibility to these oils. Our findings indicate that S. zeamais populations that are resistant to traditional insecticides might have distinct but possibly overlapping mechanisms to mitigate the actions of essential oils and traditional insecticides.
Asunto(s)
Cinnamomum zeylanicum/química , Insecticidas/farmacología , Aceites Volátiles/farmacología , Aceites de Plantas/farmacología , Syzygium/química , Gorgojos/efectos de los fármacos , Zea mays/parasitología , Animales , Locomoción/efectos de los fármacos , Control de Plagas , Enfermedades de las Plantas/parasitología , Gorgojos/fisiologíaRESUMEN
The control of the most important pest of stored maize, the weevil Sitophilus zeamais Motschulsky (Coleoptera: Curculionidae), is mainly achieved with the use of pyrethroid insecticides. However, the intensive use of these compounds has led to the selection of resistant populations and has compromised the control efficacy of this insect pest. Here, the toxicity of indoxacarb for a potential use in the control of S. zeamais was assessed on 13 Brazilian populations. Concentration-mortality bioassays, in the presence of synergists (piperonyl butoxide, triphenyl phosphate, and diethyl maleate), were used to assess potential metabolic-based indoxacarb resistance mechanisms. We also assessed the behavioral (locomotory) responses of these populations to indoxacarb exposure. The results showed significant differences between the populations (LD50 values ranged from 0.06 to 13.99 mg a.i/kg of grains), resulting in resistance ratios of >200-fold between the least (Canarana-MT) and the most (Espirito Santo do Pinhal-SP) susceptible populations. The results obtained with synergized indoxacarb suggest the involvement of esterases and glutathione-S-transferases on indoxacarb action, and also suggest the involvement of cytochrome P450-dependent monooxygenases as a potential indoxacarb resistance mechanism in Brazilian populations of S. zeamais. Although indoxacarb-induced behavioral avoidance varied among populations, some resistant populations (e.g., Canarana-MT) were able to reduce exposure to indoxacarb by spending more time in the nontreated areas. Collectively, our findings indicate that the behavioral (locomotory) and physiological responses of these insects may compromise the control efficacy of oxadiazine insecticides (e.g., indoxacarb) in Brazilian populations of S. zeamais.
Asunto(s)
Oxazinas , Gorgojos/metabolismo , Animales , Conducta Animal , Resistencia a los Insecticidas/fisiologíaRESUMEN
Essential oils have been suggested as suitable alternatives for controlling insect pests. However, the potential adaptive responses elicited in insects for mitigating the actions of these compounds have not received adequate attention. Furthermore, as is widely reported with traditional insecticides, sublethal exposure to essential oils might induce stimulatory responses or contribute to the development of resistance strategies that can compromise the management of insect pests. The current study evaluated the locomotory and respiratory responses as well as the number of larvae per grain produced by the maize weevil, Sitophilus zeamais Motschulsky, after being sublethally exposed to the essential oils of clove, Syzygium aromaticum L., and cinnamon, Cinnamomum zeylanicum L. The essential oils showed similar insecticidal toxicity (exposure route: contact with dried residues; Clove LC95 = 3.96 [2.78-6.75] µl/cm(2); Cinnamon LC95 = 3.47 [2.75-4.73] µl/cm(2)). A stimulatory effect on the median survival time (TL50) was observed when insects were exposed to low concentrations of each oil. Moreover, a higher number of larvae per grain was produced under sublethal exposure to clove essential oil. S. zeamais avoided the treated areas (in free-choice experiments) and altered their mobility when sublethally exposed to both essential oils. The respiratory rates of S. zeamais (i.e., CO2 production) were significantly reduced under low concentrations of the essential oils. We recommend the consideration of the potential sublethal effects elicited by botanical pesticides during the development of integrated pest management programs aiming to control S. zeamais.
Asunto(s)
Conducta Animal/efectos de los fármacos , Aceite de Clavo/toxicidad , Aceites Volátiles/toxicidad , Respiración/efectos de los fármacos , Gorgojos/efectos de los fármacos , AnimalesRESUMEN
Leaf-cutting ants are the most important pests in several cropping systems in the Neotropics. Granulated baits containing active ingredients, considered hazardous by the Stockholm Convention, are the usual method to control these ants. Isocycloseram is a new insecticide molecule with high safety margin for mammals, but without registration for the ants in general. Thus, this study investigated the effectiveness of granulated baits with isocycloseram in leaf-cutting ants control under laboratory and field conditions. Initially, the mortality of Atta sexdens workers, fed with dehydrated citrus pulp paste containing different concentrations of isocycloseram was evaluated in the laboratory for 21 days, for toxicological classification. Subsequently, the loading, devolution, and incorporation of baits with different concentrations of isocycloseram and the mortality of A. sexdens colonies were evaluated in the laboratory. After that, the percentages of loading and devolution of baits, foraging activity, and colony mortality treated with 0.05, 0.1, 0.2, and 0.3% of isocycloseram were evaluated for the species A. sexdens, A. laevigata, and Acromyrmex lundii in field conditions. All concentrations of isocycloseram killed more than 15% of ants in 24 h and more than 90% in 21 days in the laboratory, being classified as a fast-acting and highly effective active ingredient. Baits with 0.001 to 0.03% of isocycloseram were highly loaded and exhibited low rate of devolution. The mortality of A. sexdens colony was higher at concentrations between 0.075 and 0.3%, in the laboratory. Baits containing isocycloseram at concentrations of 0.2 and 0.3% were highly loaded, presented low devolution rates, and were highly efficient in controlling A. sexdens, A. laevigata, and A. lundii in the field, at dosages of 6, 10, and 12 g/m² of nest. This is the first report of the use of isocycloseram against leaf-cutting ants, contributing to the development of efficient and toxicologically safer ant baits.
Asunto(s)
Hormigas , Insecticidas , Animales , Hormigas/efectos de los fármacos , Insecticidas/farmacología , Control de Insectos/métodosRESUMEN
Bacillus thuringiensis (Bt) is known for its Cry and Vip3A pesticidal proteins with high selectivity to target pests. Here, we assessed the potential of a novel neotropical Bt strain (UFT038) against six lepidopteran pests, including two Cry-resistant populations of fall armyworm, Spodoptera frugiperda. We also sequenced and analyzed the genome of Bt UFT038 to identify genes involved in insecticidal activities or encoding other virulence factors. In toxicological bioassays, Bt UFT038 killed and inhibited the neonate growth in a concentration-dependent manner. Bt UFT038 and HD-1 were equally toxic against S. cosmioides, S. frugiperda (S_Bt and R_Cry1 + 2Ab populations), Helicoverpa zea, and H. armigera. However, larval growth inhibition results indicated that Bt UFT038 was more toxic than HD-1 to S. cosmioides, while HD-1 was more active against Chrysodeixis includens. The draft genome of Bt UFT038 showed the cry1Aa8, cry1Ac11, cry1Ia44, cry2Aa9, cry2Ab35, and vip3Af5 genes. Besides this, genes encoding the virulence factors (inhA, plcA, piplC, sph, and chi1-2) and toxins (alo, cytK, hlyIII, hblA-D, and nheA-C) were also identified. Collectively, our findings reveal the potential of the Bt UFT038 strain as a source of insecticidal genes against lepidopteran pests, including S. cosmioides and S. frugiperda.
Asunto(s)
Bacillus thuringiensis , Insecticidas , Mariposas Nocturnas , Animales , Humanos , Recién Nacido , Bacillus thuringiensis/genética , Bacillus thuringiensis/metabolismo , Glycine max , Endotoxinas/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Proteínas Hemolisinas/genética , Proteínas Hemolisinas/metabolismo , Proteínas Hemolisinas/farmacología , Insecticidas/farmacología , Insecticidas/metabolismo , Spodoptera/metabolismo , Larva , Factores de Virulencia/metabolismo , Control Biológico de VectoresRESUMEN
In drosophilids, competition and coexistence can impact survivorship, growth, and reproductive output. Here, we evaluated direct competition between two co-occurring fruit flies, the spotted-wing drosophila Drosophila suzukii and the African fig fly Zaprionus indianus, comparing results from field collections with laboratory experiments. Field collections were conducted to evaluate co-occurrence between species. In the laboratory, different densities of eggs of each species were provided an artificial diet, and intra- and interspecific densities were evaluated regarding biological traits such as development and fecundity. Field collections showed a prevalence of Z. indianus, followed by other drosophilid species, including D. suzukii. Pupal survival and adult emergence were higher in D. suzukii than in Z. indianus at both intra- and interspecific densities, with decreasing values in response to increased densities. Fecundity did not differ significantly for either species at different intraspecific densities, but when reared together at different densities, Z. indianus was significantly more fecund than D. suzukii. Development time showed no significant difference at intraspecific densities, but when reared together, Z. indianus had longer development times than D. suzukii. Leslie Matrix projections indicated that D. suzukii showed practically the same dynamics at intraspecific and interspecific densities, with increasing oscillations at low and intermediate densities and decreasing oscillations at high densities. Zaprionus indianus showed a similar oscillation to D. suzukii, except at intermediate intraspecific densities, when the pattern was cyclic. Low interspecific densities resulted in decreasing oscillations. In the two-choice oviposition bioassays, D. suzukii females showed no significant preference for diets previously infested or not with either conspecific or heterospecific eggs at different densities. Understanding competitive interactions between co-occurring heterospecific species should be considered when establishing management tactics for spotted-wing drosophila.
Asunto(s)
Drosophila , Oviposición , Animales , Femenino , Fertilidad , PupaRESUMEN
The use of formulations containing botanical products for controlling insects that vector human and animal diseases has increased in recent years. Plant extracts seem to offer fewer risks to the environment and to human health without reducing the application strategy's efficacy when compared to synthetic and conventional insecticides and repellents. Here, we evaluated the potential of extracts obtained from caninana, Chiococca alba (L.) Hitchc. (Rubiaceae), plants as a tool to be integrated into the management of Aedes aegypti, one of the principal vectors for the transmission of arborviruses in humans. We assessed the larvicidal and repellence performance against adult mosquitoes and evaluated the potential undesired effects of the extracts on non-target organisms. We assessed the susceptibility and predatory abilities of the nymphs of Belostoma anurum, a naturally occurring mosquito larva predator, and evaluated the C. alba extract's cytotoxic effects in mammalian cell lines. Our chromatographic analysis revealed 18 compounds, including rutin, naringin, myricetin, morin, and quercetin. The methanolic extracts of C. alba showed larvicidal (LC50 = 82 (72-94) mg/mL) activity without killing or affecting the abilities of B. anurum to prey upon mosquito larvae. Our in silico predictions revealed the molecular interactions between rutin and the AeagOBP1 receptor to be one possible mechanism for the repellent potential recorded for formulations containing C. alba extracts. Low cytotoxicity against mammalian cell lines reinforces the selectivity of C. alba extracts. Collectively, our findings highlight the potential of C. alba and one of its constituents (rutin) as alternative tools to be integrated into the management of A. aegypti mosquitoes.
RESUMEN
Interactive movements of bees facilitate the division and organization of collective tasks, notably when they need to face internal or external environmental challenges. Here, we present a Bayesian and computational approach to track the movement of several honey bee, Apis mellifera, workers at colony level. We applied algorithms that combined tracking and Kernel Density Estimation (KDE), allowing measurements of entropy and Probability Distribution Function (PDF) of the motion of tracked organisms. We placed approximately 200 recently emerged and labeled bees inside an experimental colony, which consists of a mated queen, approximately 1000 bees, and a naturally occurring beehive background. Before release, labeled bees were fed for one hour with uncontaminated diets or diets containing a commercial mixture of synthetic fungicides (thiophanate-methyl and chlorothalonil). The colonies were filmed (12 min) at the 1st hour, 5th and 10th days after the bees' release. Our results revealed that the algorithm tracked the labeled bees with great accuracy. Pesticide-contaminated colonies showed anticipated collective activities in peripheral hive areas, far from the brood area, and exhibited reduced swarm entropy and energy values when compared to uncontaminated colonies. Collectively, our approach opens novel possibilities to quantify and predict potential alterations mediated by pollutants (e.g., pesticides) at the bee colony-level.
RESUMEN
BACKGROUND: The use of insecticidal solutions containing sodium chloride (NaCl) has been proposed as a more environmentally friendly alternative to managing stink bug infestations of Neotropical soybean fields. The potential sublethal and undesirable effects of this practice have, however, been overlooked, especially with novel insecticides. Here, we have evaluated experimentally whether the addition of NaCl (0.5% w/v) to imidacloprid-containing solutions could alter insecticide toxicity and modify the reproductive responses of the Neotropical brown stink bug Euschistus heros. RESULTS: Adding NaCl to imidacloprid solutions significantly increased imidacloprid toxicity against E. heros. The exposure to E. heros to sublethal concentrations of imidacloprid affected the insect's mating abilities in a concentration-dependent manner. The addition of NaCl to solutions containing imidacloprid at concentrations as low as 0.126 µg a.i. cm-2 (i.e. the equivalent to 3% of field rate recommendation) also impacted the sexual behavior of E. heros, reducing mating duration. NaCl-exposed stink bugs, however, exhibited higher fecundity and fertility rates than those insects that were unexposed to NaCl or those that were exposed to sublethal levels of imidacloprid only. CONCLUSIONS: The addition of low amounts of NaCl resulted in a higher toxicity of imidacloprid. This practice, however, can also lead to undesirable effects as increasing reproductive output of E. heros that can potentially compromise the management of these insect pests.
Asunto(s)
Heterópteros , Insecticidas , Animales , Neonicotinoides/toxicidad , Nitrocompuestos , Cloruro de SodioRESUMEN
Stingless bees such as Partamona helleri Friese play important roles in pollination of native plants and agricultural crops in the Neotropics. Global concerns about declining bee populations due to agrochemical pollutants have, however, been biased towards the honey bee, Apis mellifera Linnaeus. Here, we analysed the unintended effects of commercial formulations of a neonicotinoid insecticide, imidacloprid, and a fungicide mixture of thiophanate-methyl and chlorothalonil on color preference, respiration rates and group locomotory activities of both P. helleri and A. mellifera. Our results revealed that P. helleri foragers that were not exposed to pesticides changed their color preference during the course of a year. By contrast, we found that pesticide exposure altered the color preference of stingless bees in a concentration-dependent manner. In addition, imidacloprid decreased the overall locomotion of both bee species, whereas the fungicide mixture increased locomotion of only stingless bees. The fungicide mixture also reduced respiration rates of forager bees of both species. Forager bees of both species altered their color preference, but not their locomotory and respiration rates, when exposed to commercial formulations of each fungicidal mixture component (i.e., chlorothalonil and thiophanate-methyl). Our findings emphasize the importance of P. helleri as a model for Neotropical wild pollinator species in pesticide risk assessments, and also the critical importance of including groups of agrochemicals that are often considered to have minimal impact on pollinators, such as fungicides.
Asunto(s)
Agroquímicos , Insecticidas , Agroquímicos/toxicidad , Animales , Abejas , Insecticidas/toxicidad , Locomoción , Polinización , Frecuencia RespiratoriaRESUMEN
Despite being effective in controlling mosquito larvae and a few other target organisms, the application of insecticides into aquatic systems may cause unintended alterations to the physiology or behavioral responses of several aquatic non-target organisms, which can ultimately lead to their death. Here, we firstly evaluated whether the susceptibility of the giant water bug, Belostoma anurum (Hemiptera: Belostomatidae), a predator of mosquito larvae, to pyriproxyfen would be similar to that of its potential prey, larvae of Aedes aegypti (Diptera: Culicidae). Secondly, we recorded the nominal concentrations of pyriproxyfen in water and evaluated whether sublethal exposures would lead to physiological or behavioral alterations on the B. anurum nymphs. We characterized the activities of three major families of detoxification enzymes (i.e., cytochrome P450 monooxygenases, glutathione-S-transferase, and general esterases) and further evaluated the abilities of pyriproxyfen sublethally-exposed B. anurum to prey upon A. aegypti larvae at different prey densities. Our findings revealed that nominal pyriproxyfen concentration significantly decreased (approximately 50%) over the first 24 h. Furthermore, when applied at the concentration of 10 µg a.i./L, pyriproxyfen was approximately four times more toxic to A. aegypti larvae (LT50 = 48 h) than to B. anurum nymphs (LT50 = 192 h). Interestingly, the pyriproxyfen sublethally-exposed (2.5 µg a.i./L) B. anurum nymphs exhibited reduced enzyme activities (cytochrome P450 monooxygenases) involved in detoxication processes and preyed significantly less on A. aegypti larvae when compared to unexposed predators. Collectively, our findings demonstrate that mortality-based pyriproxyfen risk assessments are not always protective of aquatic non-target organisms.
Asunto(s)
Aedes , Heterópteros , Insecticidas , Animales , Insecticidas/toxicidad , Larva , Control de Mosquitos , Piridinas/toxicidadRESUMEN
BACKGROUND: The application of lime sulfur is a common practice used to control arthropod pests in organic production of fruits. However, the unintended effects of this insecticide preparation on non-targeted organisms have not received the adequate attention. Here, we evaluated the lime sulfur toxicity on the phytophagous mites Tetranychus urticae Koch (Acari: Tetranychidae) and on two predatory mite species [i.e., Neoseiulus californicus (McGregor) and Phytoseiulus macropilis (Banks)] (Acari: Phytoseiidae) of natural occurrence in strawberry plants. We also assessed the repellency and potential effects on the oviposition rates and the egg viability of mites that were exposed to field-used lime sulfur concentrations (i.e., 2%). RESULTS: The lime sulfur exhibited higher toxicity to the predators N. californicus (LC50 = 5.4 [4.5%-6.8%]) and P. macropilis (LC50 = 5.0 [4.0%-6.5%]) than to the phytophagous T. urticae (LC50 = 12.4 [9.0%-17.1%]). However, the exposure to field-applied concentrations resulted in higher reductions on the oviposition rate of T. urticae (36%) than on the predatory mites (N. californicus = 18%. P. macropilis = 19%). Interestingly, although the egg viability of P. macropilis was less affected (i.e., reduction of 50%) by such lime sulfur exposures, these mites were unable to avoid lime sulfur-treated areas. Egg viability of N. californicus was only 18.6%. CONCLUSION: Lime sulfur at field-applied concentrations harmed T. urticae fecundity and fertility and it showed selectivity against naturally occurring predatory mites, which reinforces its potential as a tool for integrated mite pest management. © 2019 Society of Chemical Industry.
Asunto(s)
Fragaria , Tetranychidae , Animales , Compuestos de Calcio , Femenino , Control Biológico de Vectores , Conducta Predatoria , SulfurosRESUMEN
The adaptive fitness of insect species can be shaped by how males and females respond, both physiologically and behaviorally, to environmental challenges, such as pesticide exposure. In parasitoid wasps, most toxicological investigations focus only on female responses (e.g., survival and especially parasitism abilities), leaving the male contributions to adaptive fitness (survival, locomotion, mate search) poorly investigated. Here, we evaluated the toxicity of the spinosyn insecticide spinosad against the South American fruit fly, Anastrepha fraterculus, and we used the parasitoid wasp Diachasmimorpha longicaudata (Ashmead) to evaluate whether sex-linked locomotory and physiological responses would influence the susceptibility of these organisms to spinosad. Our results revealed that D. longicaudata males were significantly more susceptible (median lethal time (LT50) = 24 h) to spinosad than D. longicaudata females (LT50 = 120 h), which may reflect the differences in their locomotory and physiological (e.g., respiratory) responses to mitigate insecticide exposure. Compared to D. longicaudata females, male wasps were lighter (P < 0.001), walked for longer distances (P < 0.001) and periods (P < 0.001), and exhibited higher sensilla densities in their tarsi (P = 0.008), which may facilitate their intoxication with the insecticide. These findings indicate that male parasitoids should not be exempt from insecticide selectivity tests, as these organisms can be significantly more affected by such environmental challenges than their female conspecifics.
Asunto(s)
Insecticidas , Tephritidae , Avispas , Animales , Femenino , Locomoción , Masculino , Control Biológico de VectoresRESUMEN
Biorational insecticides are composed of natural products, including animals, plants, microbes, and minerals, or are their derivates. The use of biorational products for the management of insect pests has grown intensively in recent years, which has increased their popularity and share on the insecticide global market. Much of these recent increases in the use of biorational insecticides has been derived from the generalized perception that conventional insecticides have undesirable ecological and human health impacts. However, the idea of simply replacing synthetic compounds with biorational insecticides without considering their potential unintended effects can mislead their use and reduce the market life of such pest management tools. A systematic literature survey encompassing over 15 000 scientific manuscripts published between 1945 and 2019 reinforces the bias of focusing on studying the targeted effects while overlooking the potential detrimental effects of biorational products on human health and the environment (e.g. death and negative sublethal effects on pollinators and beneficial arthropods such as parasitoids and predators). Thus, the risks associated with biorational compounds (e.g. control failures, the evolution of resistance, shift in dominance, and outbreaks of secondary or primary pests) need to be revisited and the outcomes of such inquiry could be decisive for their future use in pest management programs. The shortcomings of regulatory processes, knowledge gaps, and the outlook for the use of the biorational products in pest management are discussed. © 2020 Society of Chemical Industry.
Asunto(s)
Insecticidas/farmacología , Animales , Artrópodos , Humanos , Insectos , Control de PlagasRESUMEN
Ecotoxicological risk assessments of pesticides on non-target arthropods are often carried out under constant and optimal temperature regimes. However, living organisms rarely experience these conditions in real field situations. Understanding the impact of pesticides on non-target beneficial arthropods under temperature stresses is especially important in terms of global warming. We assessed the lethal and sublethal effects of four modern insecticides (chlorantraniliprole, cyantraniliprole, spinetoram, spinosad), on the generalist predator Macrolophus pygmaeus (Hemiptera: Miridae) under a range of temperatures (from 10 to 40°C) frequently experienced in a real field scenario. A reduction coefficient (Ex) was calculated by summarizing the mortality and predator reproductive capacity and, the chemicals were classified according to the International Organization for Biological Control (IOBC) toxicity classes. The insecticides showed a marked synergistic effect with temperature, as the predator mortality and reproductive outputs were significantly correlated with increasing temperatures. Spinosyns interacted significantly with temperature causing the highest mortality and lowest fertility rates. Anthranilic diamides showed a safer ecotoxicological profile compared to spinosyns, with cyantraniliprole being more harmful than chlorantraniliprole. These results suggest that temperature should be taken into account in pesticide ecotoxicology studies within the framework of integrated pest management and the recent climate changes.
Asunto(s)
Heterópteros , Animales , Insecticidas , Control de Plagas , PlaguicidasRESUMEN
The plant-based biopesticides have been proposed as insect pest control tools that seem to be safer for the environment and human health when compared to synthetic conventional molecules. However, such assumptions are generally made without considering the absence of detrimental effects on sublethally-exposed non-target organisms or showing the physiological basis of the selective action of such botanical products. Thus, by using in silico-based and in vivo toxicological approaches, the present investigation aimed to disentangle the ecotoxicological selectivity of clove, Syzygium aromaticum, essential oil against the aphid Rhopalosiphum maidis and the non-target ladybeetle, Coleomegilla maculata. We also investigated whether the sublethal exposure to clove essential oil would affect the locomotory and predatory abilities of C. maculata. We found that the clove essential oil concentration estimated to kill 95% (LC95: 0.17 µL/cm2) of the aphids was lethal to <18% of C. maculata. Indeed, our in silico results reinforced such differential susceptibility, as it predicted that eugenol and ß-caryophyllene (i.e., the clove essential oil major components) bound to three potential molecular targets (i.e., transient receptor potential (TRP) channels, octopamine, and gamma-aminobutyric acid (GABA) receptors) of the aphids but only to the octopamine receptors of the ladybeetles. Additionally, the ladybeetles that were exposure to the clove essential oil exhibited unaffected abilities to locomote and to prey upon R. maidis aphids when compared to unexposed ladybeetles. Thus, by displaying lower toxicity against the ladybeetles, the clove essential oil represents a safer alternative tool to be integrated into programs aiming to manage aphid infestations.