Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
RNA ; 28(10): 1377-1390, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35970556

RESUMEN

Cap methyltransferases (CMTrs) O methylate the 2' position of the ribose (cOMe) of cap-adjacent nucleotides of animal, protist, and viral mRNAs. Animals generally have two CMTrs, whereas trypanosomes have three, and many viruses encode one in their genome. In the splice leader of mRNAs in trypanosomes, the first four nucleotides contain cOMe, but little is known about the status of cOMe in animals. Here, we show that cOMe is prominently present on the first two cap-adjacent nucleotides with species- and tissue-specific variations in Caenorhabditis elegans, honeybees, zebrafish, mouse, and human cell lines. In contrast, Drosophila contains cOMe primarily on the first cap-adjacent nucleotide. De novo RoseTTA modeling of CMTrs reveals close similarities of the overall structure and near identity for the catalytic tetrad, and for cap and cofactor binding for human, Drosophila and C. elegans CMTrs. Although viral CMTrs maintain the overall structure and catalytic tetrad, they have diverged in cap and cofactor binding. Consistent with the structural similarity, both CMTrs from Drosophila and humans methylate the first cap-adjacent nucleotide of an AGU consensus start. Because the second nucleotide is also methylated upon heat stress in Drosophila, these findings argue for regulated cOMe important for gene expression regulation.


Asunto(s)
Caperuzas de ARN , Ribosa , Animales , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Drosophila/genética , Drosophila/metabolismo , Humanos , Metilación , Metiltransferasas/metabolismo , Ratones , Nucleótidos/genética , Nucleótidos/metabolismo , Caperuzas de ARN/química , ARN Mensajero/genética , Ribosa/metabolismo , Pez Cebra/genética
2.
Nature ; 507(7492): 381-385, 2014 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-24531765

RESUMEN

A core promoter is a stretch of DNA surrounding the transcription start site (TSS) that integrates regulatory inputs and recruits general transcription factors to initiate transcription. The nature and causative relationship of the DNA sequence and chromatin signals that govern the selection of most TSSs by RNA polymerase II remain unresolved. Maternal to zygotic transition represents the most marked change of the transcriptome repertoire in the vertebrate life cycle. Early embryonic development in zebrafish is characterized by a series of transcriptionally silent cell cycles regulated by inherited maternal gene products: zygotic genome activation commences at the tenth cell cycle, marking the mid-blastula transition. This transition provides a unique opportunity to study the rules of TSS selection and the hierarchy of events linking transcription initiation with key chromatin modifications. We analysed TSS usage during zebrafish early embryonic development at high resolution using cap analysis of gene expression, and determined the positions of H3K4me3-marked promoter-associated nucleosomes. Here we show that the transition from the maternal to zygotic transcriptome is characterized by a switch between two fundamentally different modes of defining transcription initiation, which drive the dynamic change of TSS usage and promoter shape. A maternal-specific TSS selection, which requires an A/T-rich (W-box) motif, is replaced with a zygotic TSS selection grammar characterized by broader patterns of dinucleotide enrichments, precisely aligned with the first downstream (+1) nucleosome. The developmental dynamics of the H3K4me3-marked nucleosomes reveal their DNA-sequence-associated positioning at promoters before zygotic transcription and subsequent transcription-independent adjustment to the final position downstream of the zygotic TSS. The two TSS-defining grammars coexist, often physically overlapping, in core promoters of constitutively expressed genes to enable their expression in the two regulatory environments. The dissection of overlapping core promoter determinants represents a framework for future studies of promoter structure and function across different regulatory contexts.


Asunto(s)
Regiones Promotoras Genéticas/genética , Sitio de Iniciación de la Transcripción , Pez Cebra/genética , Animales , Secuencia de Bases , Embrión no Mamífero/embriología , Embrión no Mamífero/metabolismo , Femenino , Regulación del Desarrollo de la Expresión Génica/genética , Histonas/metabolismo , Metilación , Madres , Nucleosomas/genética , Iniciación de la Transcripción Genética , Transcriptoma/genética , Pez Cebra/embriología , Cigoto/metabolismo
3.
Nucleic Acids Res ; 44(7): 3070-81, 2016 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-26673698

RESUMEN

MicroRNAs (miRNAs) play a major role in the post-transcriptional regulation of target genes, especially in development and differentiation. Our understanding about the transcriptional regulation of miRNA genes is limited by inadequate annotation of primary miRNA (pri-miRNA) transcripts. Here, we used CAGE-seq and RNA-seq to provide genome-wide identification of the pri-miRNA core promoter repertoire and its dynamic usage during zebrafish embryogenesis. We assigned pri-miRNA promoters to 152 precursor-miRNAs (pre-miRNAs), the majority of which were supported by promoter associated post-translational histone modifications (H3K4me3, H2A.Z) and RNA polymerase II (RNAPII) occupancy. We validated seven miR-9 pri-miRNAs by in situ hybridization and showed similar expression patterns as mature miR-9. In addition, processing of an alternative intronic promoter of miR-9-5 was validated by 5' RACE PCR. Developmental profiling revealed a subset of pri-miRNAs that are maternally inherited. Moreover, we show that promoter-associated H3K4me3, H2A.Z and RNAPII marks are not only present at pri-miRNA promoters but are also specifically enriched at pre-miRNAs, suggesting chromatin level regulation of pre-miRNAs. Furthermore, we demonstrated that CAGE-seq also detects 3'-end processing of pre-miRNAs on Drosha cleavage site that correlates with miRNA-offset RNAs (moRNAs) production and provides a new tool for detecting Drosha processing events and predicting pre-miRNA processing by a genome-wide assay.


Asunto(s)
Regulación de la Expresión Génica , MicroARNs/genética , Precursores del ARN/genética , Procesamiento Postranscripcional del ARN , ARN Pequeño no Traducido/genética , Transcripción Genética , Animales , Cromatina/metabolismo , Desarrollo Embrionario/genética , Histonas/metabolismo , MicroARNs/metabolismo , Regiones Promotoras Genéticas , ARN Polimerasa II/análisis , Precursores del ARN/metabolismo , ARN Pequeño no Traducido/metabolismo , Ribonucleasa III/metabolismo , Sitio de Iniciación de la Transcripción , Pez Cebra/embriología , Pez Cebra/genética
4.
Development ; 141(3): 715-24, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24449846

RESUMEN

Zebrafish transgenesis is increasingly popular owing to the optical transparency and external development of embryos, which provide a scalable vertebrate model for in vivo experimentation. The ability to express transgenes in a tightly controlled spatio-temporal pattern is an important prerequisite for exploitation of zebrafish in a wide range of biomedical applications. However, conventional transgenesis methods are plagued by position effects: the regulatory environment of genomic integration sites leads to variation of expression patterns of transgenes driven by engineered cis-regulatory modules. This limitation represents a bottleneck when studying the precise function of cis-regulatory modules and their subtle variants or when various effector proteins are to be expressed for labelling and manipulation of defined sets of cells. Here, we provide evidence for the efficient elimination of variability of position effects by developing a PhiC31 integrase-based targeting method. To detect targeted integration events, a simple phenotype scoring of colour change in the lens of larvae is used. We compared PhiC31-based integration and Tol2 transgenesis in the analysis of the activity of a novel conserved enhancer from the developmentally regulated neural-specific esrrga gene. Reporter expression was highly variable among independent lines generated with Tol2, whereas all lines generated with PhiC31 into a single integration site displayed nearly identical, enhancer-specific reporter expression in brain nuclei. Moreover, we demonstrate that a modified integrase system can also be used for the detection of enhancer activity in transient transgenesis. These results demonstrate the power of the PhiC31-based transgene integration for the annotation and fine analysis of transcriptional regulatory elements and it promises to be a generally desirable tool for a range of applications, which rely on highly reproducible patterns of transgene activity in zebrafish.


Asunto(s)
Efectos de la Posición Cromosómica/genética , Marcación de Gen , Mutagénesis Insercional/genética , Transgenes/genética , Pez Cebra/genética , Animales , Animales Modificados Genéticamente , Secuencia de Bases , Encéfalo/metabolismo , Elementos de Facilitación Genéticos/genética , Regulación de la Expresión Génica , Técnicas de Transferencia de Gen , Genes Reporteros/genética , Sitios Genéticos/genética , Genoma/genética , Integrasas/metabolismo , Cristalino/metabolismo , Datos de Secuencia Molecular , Reproducibilidad de los Resultados , Xenopus laevis/genética
5.
BMC Dev Biol ; 16(1): 23, 2016 07 08.
Artículo en Inglés | MEDLINE | ID: mdl-27391801

RESUMEN

BACKGROUND: Birt-Hogg-Dubé syndrome (BHD) is a dominantly inherited familial cancer syndrome characterised by the development of benign skin fibrofolliculomas, multiple lung and kidney cysts, spontaneous pneumothorax and susceptibility to renal cell carcinoma. BHD is caused by mutations in the gene encoding Folliculin (FLCN). Little is known about what FLCN does in a healthy individual and how best to treat those with BHD. As a first approach to developing a vertebrate model for BHD we aimed to identify the temporal and spatial expression of flcn transcripts in the developing zebrafish embryo. To gain insights into the function of flcn in a whole organism system we generated a loss of function model of flcn by the use of morpholino knockdown in zebrafish. RESULTS: flcn is expressed broadly and upregulated in the fin bud, somites, eye and proliferative regions of the brain of the Long-pec stage zebrafish embryos. Together with knockdown phenotypes, expression analysis suggest involvement of flcn in zebrafish embryonic brain development. We have utilised the zFucci system, an in vivo, whole organism cell cycle assay to study the potential role of flcn in brain development. We found that at the 18 somite stage there was a significant drop in cells in the S-M phase of the cell cycle in flcn morpholino injected embryos with a corresponding increase of cells in the G1 phase. This was particularly evident in the brain, retina and somites of the embryo. Timelapse analysis of the head region of flcn morpholino injected and mismatch control embryos shows the temporal dynamics of cell cycle misregulation during development. CONCLUSIONS: In conclusion we show that zebrafish flcn is expressed in a non-uniform manner and is likely required for the maintenance of correct cell cycle regulation during embryonic development. We demonstrate the utilisation of the zFucci system in testing the role of flcn in cell proliferation and suggest a function for flcn in regulating cell proliferation in vertebrate embryonic brain development.


Asunto(s)
Encéfalo/crecimiento & desarrollo , Proteínas Proto-Oncogénicas/genética , Proteínas Supresoras de Tumor/genética , Proteínas de Pez Cebra/genética , Pez Cebra/embriología , Animales , Encéfalo/metabolismo , Ciclo Celular , Regulación del Desarrollo de la Expresión Génica , Técnicas de Silenciamiento del Gen , Humanos , Proteínas Proto-Oncogénicas/metabolismo , Retina/crecimiento & desarrollo , Retina/metabolismo , Somitos/crecimiento & desarrollo , Somitos/metabolismo , Imagen de Lapso de Tiempo , Proteínas Supresoras de Tumor/metabolismo , Regulación hacia Arriba , Pez Cebra/genética , Pez Cebra/metabolismo , Proteínas de Pez Cebra/metabolismo
6.
Genome Res ; 23(11): 1938-50, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-24002785

RESUMEN

Spatiotemporal control of gene expression is central to animal development. Core promoters represent a previously unanticipated regulatory level by interacting with cis-regulatory elements and transcription initiation in different physiological and developmental contexts. Here, we provide a first and comprehensive description of the core promoter repertoire and its dynamic use during the development of a vertebrate embryo. By using cap analysis of gene expression (CAGE), we mapped transcription initiation events at single nucleotide resolution across 12 stages of zebrafish development. These CAGE-based transcriptome maps reveal genome-wide rules of core promoter usage, structure, and dynamics, key to understanding the control of gene regulation during vertebrate ontogeny. They revealed the existence of multiple classes of pervasive intra- and intergenic post-transcriptionally processed RNA products and their developmental dynamics. Among these RNAs, we report splice donor site-associated intronic RNA (sRNA) to be specific to genes of the splicing machinery. For the identification of conserved features, we compared the zebrafish data sets to the first CAGE promoter map of Tetraodon and the existing human CAGE data. We show that a number of features, such as promoter type, newly discovered promoter properties such as a specialized purine-rich initiator motif, as well as sRNAs and the genes in which they are detected, are conserved in mammalian and Tetraodon CAGE-defined promoter maps. The zebrafish developmental promoterome represents a powerful resource for studying developmental gene regulation and revealing promoter features shared across vertebrates.


Asunto(s)
Desarrollo Embrionario/genética , Regulación del Desarrollo de la Expresión Génica , Purinas/metabolismo , Sitio de Iniciación de la Transcripción , Pez Cebra/embriología , Pez Cebra/genética , Animales , Evolución Molecular , Perfilación de la Expresión Génica , Genes , Genoma , Filogenia , Regiones Promotoras Genéticas , ARN/genética , ARN/metabolismo , Caperuzas de ARN/genética , Empalme del ARN , Transcriptoma , Vertebrados/genética
7.
Nucleic Acids Res ; 41(6): 3600-18, 2013 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-23393190

RESUMEN

Co-option of cis-regulatory modules has been suggested as a mechanism for the evolution of expression sites during development. However, the extent and mechanisms involved in mobilization of cis-regulatory modules remains elusive. To trace the history of non-coding elements, which may represent candidate ancestral cis-regulatory modules affirmed during chordate evolution, we have searched for conserved elements in tunicate and vertebrate (Olfactores) genomes. We identified, for the first time, 183 non-coding sequences that are highly conserved between the two groups. Our results show that all but one element are conserved in non-syntenic regions between vertebrate and tunicate genomes, while being syntenic among vertebrates. Nevertheless, in all the groups, they are significantly associated with transcription factors showing specific functions fundamental to animal development, such as multicellular organism development and sequence-specific DNA binding. The majority of these regions map onto ultraconserved elements and we demonstrate that they can act as functional enhancers within the organism of origin, as well as in cross-transgenesis experiments, and that they are transcribed in extant species of Olfactores. We refer to the elements as 'Olfactores conserved non-coding elements'.


Asunto(s)
Elementos de Facilitación Genéticos , Regulación del Desarrollo de la Expresión Génica , Urocordados/genética , Vertebrados/genética , Animales , Secuencia de Bases , Secuencia Conservada , Perros , Peces/genética , Redes Reguladoras de Genes , Genes Homeobox , Sitios Genéticos , Genoma , Humanos , Mamíferos/genética , Ratones , Sintenía , Transcripción Genética
8.
Am J Hum Genet ; 88(4): 499-507, 2011 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-21473985

RESUMEN

Warburg Micro syndrome and Martsolf syndrome are heterogenous autosomal-recessive developmental disorders characterized by brain, eye, and endocrine abnormalities. Previously, identification of mutations in RAB3GAP1 and RAB3GAP2 in both these syndromes implicated dysregulation of the RAB3 cycle (which controls calcium-mediated exocytosis of neurotransmitters and hormones) in disease pathogenesis. RAB3GAP1 and RAB3GAP2 encode the catalytic and noncatalytic subunits of the hetrodimeric enzyme RAB3GAP (RAB3GTPase-activating protein), a key regulator of the RAB3 cycle. We performed autozygosity mapping in five consanguineous families without RAB3GAP1/2 mutations and identified loss-of-function mutations in RAB18. A c.71T > A (p.Leu24Gln) founder mutation was identified in four Pakistani families, and a homozygous exon 2 deletion (predicted to result in a frameshift) was found in the fifth family. A single family whose members were compound heterozygotes for an anti-termination mutation of the stop codon c.619T > C (p.X207QextX20) and an inframe arginine deletion c.277_279 del (p.Arg93 del) were identified after direct gene sequencing and multiplex ligation-dependent probe amplification (MLPA) of a further 58 families. Nucleotide binding assays for RAB18(Leu24Gln) and RAB18(Arg93del) showed that these mutant proteins were functionally null in that they were unable to bind guanine. The clinical features of Warburg Micro syndrome patients with RAB3GAP1 or RAB3GAP2 mutations and RAB18 mutations are indistinguishable, although the role of RAB18 in trafficking is still emerging, and it has not been linked previously to the RAB3 pathway. Knockdown of rab18 in zebrafish suggests that it might have a conserved developmental role. Our findings imply that RAB18 has a critical role in human brain and eye development and neurodegeneration.


Asunto(s)
Mutación , Proteínas de Unión al GTP rab/genética , Anomalías Múltiples/genética , Anomalías Múltiples/metabolismo , Secuencia de Aminoácidos , Sustitución de Aminoácidos , Secuencia de Bases , Catarata/congénito , Catarata/genética , Catarata/metabolismo , Codón de Terminación , Consanguinidad , Córnea/anomalías , Córnea/metabolismo , Análisis Mutacional de ADN , Femenino , Efecto Fundador , Haplotipos , Humanos , Hipogonadismo/genética , Hipogonadismo/metabolismo , Discapacidad Intelectual/genética , Discapacidad Intelectual/metabolismo , Masculino , Microcefalia/genética , Microcefalia/metabolismo , Modelos Moleculares , Datos de Secuencia Molecular , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Mutación Missense , Atrofia Óptica/genética , Atrofia Óptica/metabolismo , Linaje , Fenotipo , Unión Proteica , Eliminación de Secuencia , Homología de Secuencia de Aminoácido , Proteínas de Unión al GTP rab/química , Proteínas de Unión al GTP rab/metabolismo , Proteínas de Unión al GTP rab3/genética
9.
Front Toxicol ; 6: 1359507, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38742231

RESUMEN

In the European regulatory context, rodent in vivo studies are the predominant source of neurotoxicity information. Although they form a cornerstone of neurotoxicological assessments, they are costly and the topic of ethical debate. While the public expects chemicals and products to be safe for the developing and mature nervous systems, considerable numbers of chemicals in commerce have not, or only to a limited extent, been assessed for their potential to cause neurotoxicity. As such, there is a societal push toward the replacement of animal models with in vitro or alternative methods. New approach methods (NAMs) can contribute to the regulatory knowledge base, increase chemical safety, and modernize chemical hazard and risk assessment. Provided they reach an acceptable level of regulatory relevance and reliability, NAMs may be considered as replacements for specific in vivo studies. The European Partnership for the Assessment of Risks from Chemicals (PARC) addresses challenges to the development and implementation of NAMs in chemical risk assessment. In collaboration with regulatory agencies, Project 5.2.1e (Neurotoxicity) aims to develop and evaluate NAMs for developmental neurotoxicity (DNT) and adult neurotoxicity (ANT) and to understand the applicability domain of specific NAMs for the detection of endocrine disruption and epigenetic perturbation. To speed up assay time and reduce costs, we identify early indicators of later-onset effects. Ultimately, we will assemble second-generation developmental neurotoxicity and first-generation adult neurotoxicity test batteries, both of which aim to provide regulatory hazard and risk assessors and industry stakeholders with robust, speedy, lower-cost, and informative next-generation hazard and risk assessment tools.

10.
Dev Cell ; 58(2): 155-170.e8, 2023 01 23.
Artículo en Inglés | MEDLINE | ID: mdl-36693321

RESUMEN

In anamniote embryos, the major wave of zygotic genome activation starts during the mid-blastula transition. However, some genes escape global genome repression, are activated substantially earlier, and contribute to the minor wave of genome activation. The mechanisms underlying the minor wave of genome activation are little understood. We explored the genomic organization and cis-regulatory mechanisms of a transcription body, in which the minor wave of genome activation is first detected in zebrafish. We identified the miR-430 cluster as having excessive copy number and the highest density of Pol-II-transcribed promoters in the genome, and this is required for forming the transcription body. However, this transcription body is not essential for, nor does it encompasse, minor wave transcription globally. Instead, distinct minor-wave-specific promoter architecture suggests that promoter-autonomous mechanisms regulate the minor wave of genome activation. The minor-wave-specific features also suggest distinct transcription initiation mechanisms between the minor and major waves of genome activation.


Asunto(s)
MicroARNs , Transcripción Genética , Animales , Pez Cebra/genética , Cigoto , ARN Polimerasa II/genética , MicroARNs/genética , Regulación del Desarrollo de la Expresión Génica
11.
Nat Struct Mol Biol ; 30(12): 1970-1984, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37996663

RESUMEN

Global changes in transcriptional regulation and RNA metabolism are crucial features of cancer development. However, little is known about the role of the core promoter in defining transcript identity and post-transcriptional fates, a potentially crucial layer of transcriptional regulation in cancer. In this study, we use CAGE-seq analysis to uncover widespread use of dual-initiation promoters in which non-canonical, first-base-cytosine (C) transcription initiation occurs alongside first-base-purine initiation across 59 human cancers and healthy tissues. C-initiation is often followed by a 5' terminal oligopyrimidine (5'TOP) sequence, dramatically increasing the range of genes potentially subjected to 5'TOP-associated post-transcriptional regulation. We show selective, dynamic switching between purine and C-initiation site usage, indicating transcription initiation-level regulation in cancers. We additionally detail global metabolic changes in C-initiation transcripts that mark differentiation status, proliferative capacity, radiosensitivity, and response to irradiation and to PI3K-Akt-mTOR and DNA damage pathway-targeted radiosensitization therapies in colorectal cancer organoids and cancer cell lines and tissues.


Asunto(s)
Fosfatidilinositol 3-Quinasas , ARN , Humanos , Sitio de Iniciación de la Transcripción , ARN/genética , Proliferación Celular , Purinas
12.
bioRxiv ; 2023 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-38076793

RESUMEN

The recognition of core promoter sequences by the general transcription factor TFIID is the first step in the process of RNA polymerase II (Pol II) transcription initiation. Metazoan holo-TFIID is composed of the TATA binding protein (TBP) and of 13 TBP associated factors (TAFs). Inducible Taf7 knock out (KO) results in the formation of a Taf7-less TFIID complex, while Taf10 KO leads to serious defects within the TFIID assembly pathway. Either TAF7 or TAF10 depletions correlate with the detected TAF occupancy changes at promoters, and with the distinct phenotype severities observed in mouse embryonic stem cells or mouse embryos. Surprisingly however, under either Taf7 or Taf10 deletion conditions, TBP is still associated to the chromatin, and no major changes are observed in nascent Pol II transcription. Thus, partially assembled TFIID complexes can sustain Pol II transcription initiation, but cannot replace holo-TFIID over several cell divisions and/or development.

13.
Nat Methods ; 6(12): 911-6, 2009 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-19898487

RESUMEN

Zebrafish embryos offer a unique combination of high-throughput capabilities and the complexity of the vertebrate animal for a variety of phenotypic screening applications. However, there is a need for automation of imaging technologies to exploit the potential of the transparent embryo. Here we report a high-throughput pipeline for registering domain-specific reporter expression in zebrafish embryos with the aim of mapping the interactions between cis-regulatory modules and core promoters. Automated microscopy coupled with custom-built embryo detection and segmentation software allowed the spatial registration of reporter activity for 202 enhancer-promoter combinations, based on images of thousands of embryos. The diversity of promoter-enhancer interaction specificities underscores the importance of the core promoter sequence in cis-regulatory interactions and provides a promoter resource for transgenic reporter studies. The technology described here is also suitable for the spatial analysis of fluorescence readouts in genetic, pharmaceutical or toxicological screens.


Asunto(s)
Automatización , Elementos de Facilitación Genéticos , Regiones Promotoras Genéticas , Pez Cebra/genética , Animales , Transgenes
14.
Nat Genet ; 54(7): 1037-1050, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35789323

RESUMEN

Zebrafish, a popular organism for studying embryonic development and for modeling human diseases, has so far lacked a systematic functional annotation program akin to those in other animal models. To address this, we formed the international DANIO-CODE consortium and created a central repository to store and process zebrafish developmental functional genomic data. Our data coordination center ( https://danio-code.zfin.org ) combines a total of 1,802 sets of unpublished and re-analyzed published genomic data, which we used to improve existing annotations and show its utility in experimental design. We identified over 140,000 cis-regulatory elements throughout development, including classes with distinct features dependent on their activity in time and space. We delineated the distinct distance topology and chromatin features between regulatory elements active during zygotic genome activation and those active during organogenesis. Finally, we matched regulatory elements and epigenomic landscapes between zebrafish and mouse and predicted functional relationships between them beyond sequence similarity, thus extending the utility of zebrafish developmental genomics to mammals.


Asunto(s)
Bases de Datos Genéticas , Regulación del Desarrollo de la Expresión Génica , Genoma , Genómica , Secuencias Reguladoras de Ácidos Nucleicos , Proteínas de Pez Cebra , Pez Cebra , Animales , Cromatina/genética , Genoma/genética , Humanos , Ratones , Anotación de Secuencia Molecular , Organogénesis/genética , Secuencias Reguladoras de Ácidos Nucleicos/genética , Pez Cebra/embriología , Pez Cebra/genética , Proteínas de Pez Cebra/genética
15.
Methods Mol Biol ; 2218: 185-194, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33606232

RESUMEN

Here, we describe a fast and straightforward methodology to in vivo detect transcriptional activity in the early zebrafish germ line. We report how fluorescently labeled morpholinos, targeted to nascent early transcripts, can be used to track the onset of transcriptional events during early embryogenesis. This method could be applied to any tagged cell line in a developing early zebrafish embryo as long as the gene of interest is expressed at high enough level for morpholino detection and is expressed at the first and main wave of genome activation, for which the protocol has been verified. The protocol, in combination with genetic manipulation, allows studies of mechanisms driving zygotic genome activation (ZGA) in individual cells. The reported procedures apply to a broad range of purposes for zebrafish embryo manipulation in view of imaging nuclear molecules in specific cell types.


Asunto(s)
Células Germinativas/fisiología , Transcripción Genética/fisiología , Pez Cebra/fisiología , Animales , Embrión no Mamífero/metabolismo , Embrión no Mamífero/fisiología , Desarrollo Embrionario/genética , Desarrollo Embrionario/fisiología , Femenino , Regulación del Desarrollo de la Expresión Génica/genética , Regulación del Desarrollo de la Expresión Génica/fisiología , Genoma/genética , Genoma/fisiología , Células Germinativas/metabolismo , Masculino , Morfolinos/metabolismo , Transcripción Genética/genética , Pez Cebra/genética , Pez Cebra/metabolismo , Proteínas de Pez Cebra/genética , Cigoto/metabolismo , Cigoto/fisiología
16.
Dev Cell ; 56(5): 641-656.e5, 2021 03 08.
Artículo en Inglés | MEDLINE | ID: mdl-33651978

RESUMEN

In many animal models, primordial germ cell (PGC) development depends on maternally deposited germ plasm, which prevents somatic cell fate. Here, we show that PGCs respond to regulatory information from the germ plasm in two distinct phases using two distinct mechanisms in zebrafish. We demonstrate that PGCs commence zygotic genome activation together with the somatic blastocysts with no demonstrable differences in transcriptional and chromatin opening. Unexpectedly, both PGC and somatic blastocysts activate germ-cell-specific genes, which are only stabilized in PGCs by cytoplasmic germ plasm determinants. Disaggregated perinuclear relocalization of germ plasm during PGC migration is regulated by the germ plasm determinant Tdrd7 and is coupled to dramatic divergence between PGC and somatic transcriptomes. This transcriptional divergence relies on PGC-specific cis-regulatory elements characterized by promoter-proximal distribution. We show that Tdrd7-dependent reconfiguration of chromatin accessibility is required for elaboration of PGC fate but not for PGC migration.


Asunto(s)
Diferenciación Celular , Cromatina/genética , Células Germinativas/citología , Ribonucleoproteínas/metabolismo , Transcriptoma , Proteínas de Pez Cebra/metabolismo , Pez Cebra/crecimiento & desarrollo , Animales , Movimiento Celular , Cromatina/química , Epigénesis Genética , Genoma , Células Germinativas/metabolismo , Ribonucleoproteínas/genética , Pez Cebra/genética , Pez Cebra/metabolismo , Proteínas de Pez Cebra/genética
17.
iScience ; 23(4): 101008, 2020 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-32268280

RESUMEN

HOTAIR was proposed to regulate either HoxD cluster genes in trans or HoxC cluster genes in cis, a mechanism that remains unclear. We have identified a 32-nucleotide conserved noncoding element (CNE) as HOTAIR ancient sequence that likely originated at the root of vertebrate. The second round of whole-genome duplication resulted in one copy of the CNE within HOTAIR and another copy embedded in noncoding transcript of HOXD11. Paralogous CNEs underwent compensatory mutations, exhibit sequence complementarity with respect to transcripts directionality, and have high affinity in vitro. The HOTAIR CNE resembled a poised enhancer in stem cells and an active enhancer in HOTAIR-expressing cells. HOTAIR expression is positively correlated with HOXC11 in cis and negatively correlated with HOXD11 in trans. We propose a dual modality of HOTAIR regulation where transcription of HOTAIR and its embedded enhancer regulates HOXC11 in cis and sequence complementarity between paralogous CNEs suggests HOXD11 regulation in trans.

18.
Nat Commun ; 11(1): 168, 2020 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-31924754

RESUMEN

Variations in transcription start site (TSS) selection reflect diversity of preinitiation complexes and can impact on post-transcriptional RNA fates. Most metazoan polymerase II-transcribed genes carry canonical initiation with pyrimidine/purine (YR) dinucleotide, while translation machinery-associated genes carry polypyrimidine initiator (5'-TOP or TCT). By addressing the developmental regulation of TSS selection in zebrafish we uncovered a class of dual-initiation promoters in thousands of genes, including snoRNA host genes. 5'-TOP/TCT initiation is intertwined with canonical initiation and used divergently in hundreds of dual-initiation promoters during maternal to zygotic transition. Dual-initiation in snoRNA host genes selectively generates host and snoRNA with often different spatio-temporal expression. Dual-initiation promoters are pervasive in human and fruit fly, reflecting evolutionary conservation. We propose that dual-initiation on shared promoters represents a composite promoter architecture, which can function both coordinately and divergently to diversify RNAs.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica , Redes Reguladoras de Genes , Regiones Promotoras Genéticas/genética , Sitio de Iniciación de la Transcripción , Transcripción Genética , Animales , Secuencia de Bases , Drosophila/genética , Drosophila/crecimiento & desarrollo , Humanos , ARN/genética , ARN/fisiología , ARN Nucleolar Pequeño/genética , ARN Nucleolar Pequeño/metabolismo , ARN Pequeño no Traducido/genética , ARN Pequeño no Traducido/fisiología , ARN no Traducido/genética , ARN no Traducido/fisiología , Elementos Reguladores de la Transcripción , Pez Cebra/genética , Pez Cebra/crecimiento & desarrollo , Cigoto
19.
Dev Biol ; 318(2): 366-77, 2008 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-18455719

RESUMEN

The cis-regulatory regions of many developmental regulators and transcription factors are believed to be highly conserved in the genomes of vertebrate species, suggesting specific regulatory mechanisms for these gene classes. We functionally characterized five notochord enhancers, whose sequence is highly conserved, and systematically mutated two of them. Two subregions were identified to be essential for expression in the notochord of the zebrafish embryo. Synthetic enhancers containing the two essential regions in front of a TATA-box drive expression in the notochord while concatemerization of the subregions alone is not sufficient, indicating that the combination of the two sequence elements is required for notochord expression. Both regions are present in the five functionally characterized notochord enhancers. However, the position, the distance and relative orientation of the two sequence motifs can vary substantially within the enhancer sequences. This suggests that the regulatory grammar itself does not dictate the high evolutionary conservation between these orthologous cis-regulatory sequences. Rather, it represents a less well-conserved layer of sequence organization within these sequences.


Asunto(s)
Notocorda/metabolismo , Elementos Reguladores de la Transcripción , Pez Cebra/metabolismo , Animales , Secuencia de Bases , Secuencia Conservada , Análisis Mutacional de ADN , Elementos de Facilitación Genéticos , Factores de Transcripción Forkhead/metabolismo , Regulación del Desarrollo de la Expresión Génica , Proteínas HMGB/genética , Humanos , Regiones Promotoras Genéticas , Factor de Transcripción SOX9 , Alineación de Secuencia , Pez Cebra/genética , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo
20.
Aquat Toxicol ; 208: 157-167, 2019 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-30677711

RESUMEN

Environmental estrogens are a serious concern worldwide due to their ubiquity and adverse ecotoxicological and health effects. Chemical structure of these substances is highly diverse, therefore estrogenicity cannot be predicted on the basis of molecular structure. Furthermore, estimation of estrogenicity of environmental samples based on chemical analytics of suspects is difficult given the complex interaction of chemicals and the impact on estrogenicity. The full estrogenic impact of an environmental sample can thus only be revealed by a series of sensitive in vitro and in vivo ecotoxicological tests. Herein we describe a vitellogenin reporter transgenic zebrafish line (Tg(vtg1:mCherry)) that enables the detection of estrogenicity in the environmentally relevant, low concentration ranges in embryonic tests that are in accordance with 3Rs and relevant animal welfare regulations. The transgene construct used for the development of Tg(vtg1:mCherry) carried a long (3.4 kbp) natural vitellogenin-1 promoter sequence with a high number of ERE sites. A test protocol was developed based on our finding that the endogenous vitellogenin and the reporter show similar spatial expression pattern and both endogenous and vitellogenin reporter is only produced in the left hepatic lobe of 5 dpf zebrafish embryos. Seven generations of Tg(vtg1:mCherry) have been established, and the estrogen responsiveness was tested with different estrogenic substances and wastewater samples. Embryos were exposed from 3 to 5 days post fertilization (dpf). Fluorescence in embryos could be detected upon treatment with 17-ß-estradiol from a concentration of 100 ng/L, 17-α-ethynilestradiol from 1 ng/L, zearalenone from 100 ng/L and bisphenol-A from 1 mg/L. In the adult stage transgene activity appeared to be more sensitive to estrogen treatment, with detectable transgene activity from 5 ng/L 17-ß-estradiol concentration. The transgenic line Tg(vtg1:mCherry) was also suitable for the direct measurement of estrogenicity in wastewater samples without sample extraction. The detection of estrogenic activity using the reporter line was confirmed by the bioluminescent yeast estrogen screen.


Asunto(s)
Estrógenos/análisis , Hígado/metabolismo , Vitelogeninas/metabolismo , Proteínas de Pez Cebra/metabolismo , Pez Cebra/genética , Animales , Animales Modificados Genéticamente , Biomarcadores/metabolismo , Embrión no Mamífero/metabolismo , Estradiol/metabolismo , Fluorescencia , Heterocigoto , Homocigoto , Hígado/efectos de los fármacos , Masculino , Elementos de Respuesta/genética , Transgenes , Aguas Residuales/química , Contaminantes Químicos del Agua/análisis , Pez Cebra/embriología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA