Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Bioengineering (Basel) ; 11(9)2024 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-39329674

RESUMEN

The task of localizing distinct anatomical structures in medical image data is an essential prerequisite for several medical applications, such as treatment planning in orthodontics, bone-age estimation, or initialization of segmentation methods in automated image analysis tools. Currently, Anatomical Landmark Localization (ALL) is mainly solved by deep-learning methods, which cannot guarantee robust ALL predictions; there may always be outlier predictions that are far from their ground truth locations due to out-of-distribution inputs. However, these localization outliers are detrimental to the performance of subsequent medical applications that rely on ALL results. The current ALL literature relies heavily on implicit anatomical constraints built into the loss function and network architecture to reduce the risk of anatomically infeasible predictions. However, we argue that in medical imaging, where images are generally acquired in a controlled environment, we should use stronger explicit anatomical constraints to reduce the number of outliers as much as possible. Therefore, we propose the end-to-end trainable Global Anatomical Feasibility Filter and Analysis (GAFFA) method, which uses prior anatomical knowledge estimated from data to explicitly enforce anatomical constraints. GAFFA refines the initial localization results of a U-Net by approximately solving a Markov Random Field (MRF) with a single iteration of the sum-product algorithm in a differentiable manner. Our experiments demonstrate that GAFFA outperforms all other landmark refinement methods investigated in our framework. Moreover, we show that GAFFA is more robust to large outliers than state-of-the-art methods on the studied X-ray hand dataset. We further motivate this claim by visualizing the anatomical constraints used in GAFFA as spatial energy heatmaps, which allowed us to find an annotation error in the hand dataset not previously discussed in the literature.

2.
J Clin Med ; 13(1)2023 Dec 29.
Artículo en Inglés | MEDLINE | ID: mdl-38202204

RESUMEN

The aim of this validation study was to comprehensively evaluate the performance and generalization capability of a deep learning-based periapical lesion detection algorithm on a clinically representative cone-beam computed tomography (CBCT) dataset and test for non-inferiority. The evaluation involved 195 CBCT images of adult upper and lower jaws, where sensitivity and specificity metrics were calculated for all teeth, stratified by jaw, and stratified by tooth type. Furthermore, each lesion was assigned a periapical index score based on its size to enable a score-based evaluation. Non-inferiority tests were conducted with proportions of 90% for sensitivity and 82% for specificity. The algorithm achieved an overall sensitivity of 86.7% and a specificity of 84.3%. The non-inferiority test indicated the rejection of the null hypothesis for specificity but not for sensitivity. However, when excluding lesions with a periapical index score of one (i.e., very small lesions), the sensitivity improved to 90.4%. Despite the challenges posed by the dataset, the algorithm demonstrated promising results. Nevertheless, further improvements are needed to enhance the algorithm's robustness, particularly in detecting very small lesions and the handling of artifacts and outliers commonly encountered in real-world clinical scenarios.

3.
J Endod ; 48(11): 1434-1440, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-35952897

RESUMEN

INTRODUCTION: Cone-beam computed tomography (CBCT) is an essential diagnostic tool in oral radiology. Radiolucent periapical lesions (PALs) represent the most frequent jaw lesions. However, the description, interpretation, and documentation of radiological findings, especially incidental findings, are time-consuming and resource-intensive, requiring a high degree of expertise. To improve quality, dentists may use artificial intelligence in the form of deep learning tools. This study was conducted to develop and validate a deep convolutional neuronal network for the automated detection of osteolytic PALs in CBCT data sets. METHODS: CBCT data sets from routine clinical operations (maxilla, mandible, or both) performed from January to October 2020 were retrospectively screened and selected. A 2-step approach was used for automatic PAL detection. First, tooth localization and identification were performed using the SpatialConfiguration-Net based on heatmap regression. Second, binary segmentation of lesions was performed using a modified U-Net architecture. A total of 144 CBCT images were used to train and test the networks. The method was evaluated using the 4-fold cross-validation technique. RESULTS: The success detection rate of the tooth localization network ranged between 72.6% and 97.3%, whereas the sensitivity and specificity values of lesion detection were 97.1% and 88.0%, respectively. CONCLUSIONS: Although PALs showed variations in appearance, size, and shape in the CBCT data set and a high imbalance existed between teeth with and without PALs, the proposed fully automated method provided excellent results compared with related literature.


Asunto(s)
Inteligencia Artificial , Tomografía Computarizada de Haz Cónico , Enfermedades Periapicales , Tomografía Computarizada de Haz Cónico/métodos , Mandíbula , Redes Neurales de la Computación , Estudios Retrospectivos , Enfermedades Periapicales/diagnóstico por imagen
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA