Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Am J Hum Genet ; 109(3): 498-507, 2022 03 03.
Artículo en Inglés | MEDLINE | ID: mdl-35120629

RESUMEN

Recurrence risk calculations in autosomal recessive diseases are complicated when the effect of genetic variants and their population frequencies and penetrances are unknown. An example of this is Stargardt disease (STGD1), a frequent recessive retinal disease caused by bi-allelic pathogenic variants in ABCA4. In this cross-sectional study, 1,619 ABCA4 variants from 5,579 individuals with STGD1 were collected and categorized by (1) severity based on statistical comparisons of their frequencies in STGD1-affected individuals versus the general population, (2) their observed versus expected homozygous occurrence in STGD1-affected individuals, (3) their occurrence in combination with established mild alleles in STGD1-affected individuals, and (4) previous functional and clinical studies. We used the sum allele frequencies of these severity categories to estimate recurrence risks for offspring of STGD1-affected individuals and carriers of pathogenic ABCA4 variants. The risk for offspring of an STGD1-affected individual with the "severe|severe" genotype or a "severe|mild with complete penetrance" genotype to develop STGD1 at some moment in life was estimated at 2.8%-3.1% (1 in 36-32 individuals) and 1.6%-1.8% (1 in 62-57 individuals), respectively. The risk to develop STGD1 in childhood was estimated to be 2- to 4-fold lower: 0.68%-0.79% (1 in 148-126) and 0.34%-0.39% (1 in 296-252), respectively. In conclusion, we established personalized recurrence risk calculations for STGD1-affected individuals with different combinations of variants. We thus propose an expanded genotype-based personalized counseling to appreciate the variable recurrence risks for STGD1-affected individuals. This represents a conceptual breakthrough because risk calculations for STGD1 may be exemplary for many other inherited diseases.


Asunto(s)
Transportadoras de Casetes de Unión a ATP , Asesoramiento Genético , Transportadoras de Casetes de Unión a ATP/genética , Estudios Transversales , Humanos , Mutación , Enfermedad de Stargardt/genética
2.
Hum Genet ; 143(5): 721-734, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38691166

RESUMEN

TMPRSS3-related hearing loss presents challenges in correlating genotypic variants with clinical phenotypes due to the small sample sizes of previous studies. We conducted a cross-sectional genomics study coupled with retrospective clinical phenotype analysis on 127 individuals. These individuals were from 16 academic medical centers across 6 countries. Key findings revealed 47 unique TMPRSS3 variants with significant differences in hearing thresholds between those with missense variants versus those with loss-of-function genotypes. The hearing loss progression rate for the DFNB8 subtype was 0.3 dB/year. Post-cochlear implantation, an average word recognition score of 76% was observed. Of the 51 individuals with two missense variants, 10 had DFNB10 with profound hearing loss. These 10 all had at least one of 4 TMPRSS3 variants predicted by computational modeling to be damaging to TMPRSS3 structure and function. To our knowledge, this is the largest study of TMPRSS3 genotype-phenotype correlations. We find significant differences in hearing thresholds, hearing loss progression, and age of presentation, by TMPRSS3 genotype and protein domain affected. Most individuals with TMPRSS3 variants perform well on speech recognition tests after cochlear implant, however increased age at implant is associated with worse outcomes. These findings provide insight for genetic counseling and the on-going design of novel therapeutic approaches.


Asunto(s)
Estudios de Asociación Genética , Pérdida Auditiva , Proteínas de la Membrana , Serina Endopeptidasas , Humanos , Femenino , Masculino , Serina Endopeptidasas/genética , Adulto , Proteínas de la Membrana/genética , Pérdida Auditiva/genética , Niño , Persona de Mediana Edad , Adolescente , Preescolar , Genotipo , Estudios de Cohortes , Fenotipo , Mutación Missense , Estudios Transversales , Adulto Joven , Estudios Retrospectivos , Anciano , Proteínas de Neoplasias
3.
Ear Hear ; 2024 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-38987893

RESUMEN

OBJECTIVES: Usher syndrome (USH), characterized by bilateral sensorineural hearing loss (SNHL) and retinitis pigmentosa (RP), prompts increased reliance on hearing due to progressive visual deterioration. It can be categorized into three subtypes: USH type 1 (USH1), characterized by severe to profound congenital SNHL, childhood-onset RP, and vestibular areflexia; USH type 2 (USH2), presenting with moderate to severe progressive SNHL and RP onset in the second decade, with or without vestibular dysfunction; and USH type 3 (USH3), featuring variable progressive SNHL beginning in childhood, variable RP onset, and diverse vestibular function. Previous studies evaluating cochlear implant (CI) outcomes in individuals with USH used varying or short follow-up durations, while others did not evaluate outcomes for each subtype separately. This study evaluates long-term CI performance in subjects with USH, at both short-term and long-term, considering each subtype separately. DESIGN: This retrospective, observational cohort study identified 36 CI recipients (53 ears) who were categorized into four different groups: early-implanted USH1 (first CI at ≤7 years of age), late-implanted USH1 (first CI at ≥8 years of age), USH2 and USH3. Phoneme scores at 65 dB SPL with CI were evaluated at 1 year, ≥2 years (mid-term), and ≥5 years postimplantation (long-term). Each subtype was analyzed separately due to the significant variability in phenotype observed among the three subtypes. RESULTS: Early-implanted USH1-subjects (N = 23 ears) achieved excellent long-term phoneme scores (100% [interquartile ranges {IQR} = 95 to 100]), with younger age at implantation significantly correlating with better CI outcomes. Simultaneously implanted subjects had significantly better outcomes than sequentially implanted subjects (p = 0.028). Late-implanted USH1 subjects (N = 3 ears) used CI solely for sound detection and showed a mean phoneme discrimination score of 12% (IQR = 0 to 12), while still expressing satisfaction with ambient sound detection. In the USH2 group (N = 23 ears), a long-term mean phoneme score of 85% (IQR = 81 to 95) was found. Better outcomes were associated with younger age at implantation and higher preimplantation speech perception scores. USH3-subjects (N = 7 ears) achieved a mean postimplantation phoneme score of 71% (IQR = 45 to 91). CONCLUSIONS: This study is currently one of the largest and most comprehensive studies evaluating CI outcomes in individuals with USH, demonstrating that overall, individuals with USH benefit from CI at both short- and long-term follow-up. Due to the considerable variability in phenotype observed among the three subtypes, each subtype was analyzed separately, resulting in smaller sample sizes. For USH1 subjects, optimal CI outcomes are expected with early simultaneous bilateral implantation. Late implantation in USH1 provides signaling function, but achieved speech recognition is insufficient for oral communication. In USH2 and USH3, favorable CI outcomes are expected, especially if individuals exhibit sufficient speech recognition with hearing aids and receive ample auditory stimulation preimplantation. Early implantation is recommended for USH2, given the progressive nature of hearing loss and concomitant severe visual impairment. In comparison with USH2, predicting outcomes in USH3 remains challenging due to the variability found. Counseling for USH2 and USH3 should highlight early implantation benefits and encourage hearing aid use.

4.
Genet Med ; 25(3): 100345, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36524988

RESUMEN

PURPOSE: Structural variants (SVs) play an important role in inherited retinal diseases (IRD). Although the identification of SVs significantly improved upon the availability of genome sequencing, it is expected that involvement of SVs in IRDs is higher than anticipated. We revisited short-read genome sequencing data to enhance the identification of gene-disruptive SVs. METHODS: Optical genome mapping was performed to improve SV detection in short-read genome sequencing-negative cases. In addition, reanalysis of short-read genome sequencing data was performed to improve the interpretation of SVs and to re-establish SV prioritization criteria. RESULTS: In a monoallelic USH2A case, optical genome mapping identified a pericentric inversion (173 megabase), with 1 breakpoint disrupting USH2A. Retrospectively, the variant could be observed in genome sequencing data but was previously deemed false positive. Reanalysis of short-read genome sequencing data (427 IRD cases) was performed which yielded 30 pathogenic SVs affecting, among other genes, USH2A (n = 15), PRPF31 (n = 3), and EYS (n = 2). Eight of these (>25%) were overlooked during previous analyses. CONCLUSION: Critical evaluation of our findings allowed us to re-establish and improve our SV prioritization and interpretation guidelines, which will prevent missing pathogenic events in future analyses. Our data suggest that more attention should be paid to SV interpretation and the current contribution of SVs in IRDs is still underestimated.


Asunto(s)
Genoma Humano , Enfermedades de la Retina , Humanos , Estudios Retrospectivos , Genoma Humano/genética , Mapeo Cromosómico , Análisis de Secuencia , Enfermedades de la Retina/genética , Variación Estructural del Genoma , Proteínas del Ojo/genética
5.
Hum Genet ; 141(11): 1723-1738, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-35226187

RESUMEN

Usher syndrome (USH) is an autosomal recessively inherited disease characterized by sensorineural hearing loss (SNHL) and retinitis pigmentosa (RP) with or without vestibular dysfunction. It is highly heterogeneous both clinically and genetically. Recently, variants in the arylsulfatase G (ARSG) gene have been reported to underlie USH type IV. This distinct type of USH is characterized by late-onset RP with predominantly pericentral and macular changes, and late onset SNHL without vestibular dysfunction. In this study, we describe the USH type IV phenotype in three unrelated subjects. We identified three novel pathogenic variants, two novel likely pathogenic variants, and one previously described pathogenic variant in ARSG. Functional experiments indicated a loss of sulfatase activity of the mutant proteins. Our findings confirm that ARSG variants cause the newly defined USH type IV and support the proposed extension of the phenotypic USH classification.


Asunto(s)
Retinitis Pigmentosa , Síndromes de Usher , Arilsulfatasas , Humanos , Proteínas Mutantes , Retinitis Pigmentosa/genética , Sulfatasas , Síndromes de Usher/genética , Síndromes de Usher/metabolismo
6.
Hum Mutat ; 42(12): 1521-1547, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34411390

RESUMEN

Mutations in PRPH2, encoding peripherin-2, are associated with the development of a wide variety of inherited retinal diseases (IRDs). To determine the causality of the many PRPH2 variants that have been discovered over the last decades, we surveyed all published PRPH2 variants up to July 2020, describing 720 index patients that in total carried 245 unique variants. In addition, we identified seven novel PRPH2 variants in eight additional index patients. The pathogenicity of all variants was determined using the ACMG guidelines. With this, 107 variants were classified as pathogenic, 92 as likely pathogenic, one as benign, and two as likely benign. The remaining 50 variants were classified as variants of uncertain significance. Interestingly, of the total 252 PRPH2 variants, more than half (n = 137) were missense variants. All variants were uploaded into the Leiden Open source Variation and ClinVar databases. Our study underscores the need for experimental assays for variants of unknown significance to improve pathogenicity classification, which would allow us to better understand genotype-phenotype correlations, and in the long-term, hopefully also support the development of therapeutic strategies for patients with PRPH2-associated IRD.


Asunto(s)
Periferinas/genética , Enfermedades de la Retina , Estudios de Asociación Genética , Humanos , Mutación , Mutación Missense , Enfermedades de la Retina/genética
7.
Ophthalmology ; 128(11): 1604-1617, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-32717343

RESUMEN

PURPOSE: To develop a genotype assay to assess associations with common and rare age-related macular degeneration (AMD) risk variants, to calculate an overall genetic risk score (GRS), and to identify potential misdiagnoses with inherited macular dystrophies that mimic AMD. DESIGN: Case-control study. PARTICIPANTS: Individuals (n = 4740) from 5 European cohorts. METHODS: We designed single-molecule molecular inversion probes for target selection and used next generation sequencing to sequence 87 single nucleotide polymorphisms (SNPs), coding and splice-site regions of 10 AMD-(related) genes (ARMS2, C3, C9, CD46, CFB, CFH, CFI, HTRA1, TIMP3, and SLC16A8), and 3 genes that cause inherited macular dystrophies (ABCA4, CTNNA1, and PRPH2). Genetic risk scores for common AMD risk variants were calculated based on effect size and genotype of 52 AMD-associated variants. Frequency of rare variants was compared between late AMD patients and control individuals with logistic regression analysis. MAIN OUTCOME MEASURES: Genetic risk score, association of genetic variants with AMD, and genotype-phenotype correlations. RESULTS: We observed high concordance rates between our platform and other genotyping platforms for the 69 successfully genotyped SNPs (>96%) and for the rare variants (>99%). We observed a higher GRS for patients with late AMD compared with patients with early/intermediate AMD (P < 0.001) and individuals without AMD (P < 0.001). A higher proportion of pathogenic variants in the CFH (odds ratio [OR] = 2.88; P = 0.006), CFI (OR = 4.45; P = 0.005), and C3 (OR = 6.56; P = 0.0003) genes was observed in late AMD patients compared with control individuals. In 9 patients, we identified pathogenic variants in the PRPH2, ABCA4, and CTNNA1 genes, which allowed reclassification of these patients as having inherited macular dystrophy. CONCLUSIONS: This study reports a genotype assay for common and rare AMD genetic variants, which can identify individuals at intermediate to high genetic risk of late AMD and enables differential diagnosis of AMD-mimicking dystrophies. Our study supports sequencing of CFH, CFI, and C3 genes because they harbor rare high-risk variants. Carriers of these variants could be amendable for new treatments for AMD that currently are under development.


Asunto(s)
ADN/genética , Proteínas del Ojo/genética , Predisposición Genética a la Enfermedad , Degeneración Macular/genética , Polimorfismo de Nucleótido Simple , Anciano , Anciano de 80 o más Años , Estudios de Casos y Controles , Proteínas del Ojo/metabolismo , Genotipo , Humanos , Degeneración Macular/diagnóstico , Degeneración Macular/metabolismo , Masculino , Persona de Mediana Edad , Fenotipo , Factores de Riesgo
8.
Hum Mol Genet ; 27(4): 614-624, 2018 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-29272404

RESUMEN

Retinitis pigmentosa (RP), the most common form of inherited retinal degeneration, is associated with different groups of genes, including those encoding proteins involved in centriole and cilium biogenesis. Exome sequencing revealed a homozygous nonsense mutation [c.304_305delGA (p. D102*)] in POC5, encoding the Proteome Of Centriole 5 protein, in a patient with RP, short stature, microcephaly and recurrent glomerulonephritis. The POC5 gene is ubiquitously expressed, and immunohistochemistry revealed a distinct POC5 localization at the photoreceptor connecting cilium. Morpholino-oligonucleotide-induced knockdown of poc5 translation in zebrafish resulted in decreased length of photoreceptor outer segments and a decreased visual motor response, a measurement of retinal function. These phenotypes could be rescued by wild-type human POC5 mRNA. These findings demonstrate that Poc5 is important for normal retinal development and function. Altogether, this study presents POC5 as a novel gene involved autosomal recessively inherited RP, and strengthens the hypothesis that mutations in centriolar proteins are important cause of retinal dystrophies.


Asunto(s)
Proteínas Portadoras/genética , Exoma/genética , Retinitis Pigmentosa/genética , Adulto , Femenino , Humanos , Mutación/genética , Adulto Joven
9.
Hum Mutat ; 39(2): 177-186, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29159838

RESUMEN

Mutations in Eyes shut homolog (EYS) are one of the most common causes of autosomal recessive (ar) retinitis pigmentosa (RP), a progressive blinding disorder. The exact function of the EYS protein and the pathogenic mechanisms underlying EYS-associated RP are still poorly understood, which hampers the interpretation of the causality of many EYS variants discovered to date. We collected all reported EYS variants present in 377 arRP index cases published before June 2017, and uploaded them in the Leiden Open Variation Database (www.LOVD.nl/EYS). We also describe 36 additional index cases, carrying 26 novel variants. Of the 297 unique EYS variants identified, almost half (n = 130) are predicted to result in premature truncation of the EYS protein. Classification of all variants using the American College of Medical Genetics and Genomics guidelines revealed that the predicted pathogenicity of these variants cover the complete spectrum ranging from likely benign to pathogenic, although especially missense variants largely fall in the category of uncertain significance. Besides the identification of likely benign alleles previously reported as being probably pathogenic, our comprehensive analysis underscores the need of functional assays to assess the causality of EYS variants, in order to improve molecular diagnostics and counseling of patients with EYS-associated RP.


Asunto(s)
Proteínas del Ojo/genética , Mutación/genética , Retinitis Pigmentosa/genética , Alelos , Genotipo , Humanos , Mutación Missense/genética , Fenotipo , Sitios de Empalme de ARN/genética
10.
Hum Mol Genet ; 25(20): 4546-4555, 2016 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-28173158

RESUMEN

Hereditary retinal degenerations encompass a group of genetic diseases characterized by extreme clinical variability. Following next-generation sequencing and autozygome-based screening of patients presenting with a peculiar, recessive form of cone-dominated retinopathy, we identified five homozygous variants [p.(Asp594fs), p.(Gln117*), p.(Met712fs), p.(Ile756Phe), and p.(Glu543Lys)] in the polyglutamylase-encoding gene TTLL5, in eight patients from six families. The two male patients carrying truncating TTLL5 variants also displayed a substantial reduction in sperm motility and infertility, whereas those carrying missense changes were fertile. Defects in this polyglutamylase in humans have recently been associated with cone photoreceptor dystrophy, while mouse models carrying truncating mutations in the same gene also display reduced fertility in male animals. We examined the expression levels of TTLL5 in various human tissues and determined that this gene has multiple viable isoforms, being highly expressed in testis and retina. In addition, antibodies against TTLL5 stained the basal body of photoreceptor cells in rat and the centrosome of the spermatozoon flagellum in humans, suggesting a common mechanism of action in these two cell types. Taken together, our data indicate that mutations in TTLL5 delineate a novel, allele-specific syndrome causing defects in two as yet pathogenically unrelated functions, reproduction and vision.


Asunto(s)
Proteínas Portadoras/genética , Distrofias de Conos y Bastones/enzimología , Expresión Génica , Infertilidad Masculina/enzimología , Mutación , Adolescente , Adulto , Anciano , Animales , Distrofias de Conos y Bastones/genética , Análisis Mutacional de ADN , Modelos Animales de Enfermedad , Proteínas del Ojo/genética , Femenino , Homocigoto , Humanos , Infertilidad Masculina/genética , Masculino , Ratones , Persona de Mediana Edad , Especificidad de Órganos , Linaje , Células Fotorreceptoras de Vertebrados/enzimología , Ratas , Motilidad Espermática , Espermatozoides/enzimología , Testículo/enzimología
11.
J Med Genet ; 54(9): 624-632, 2017 09.
Artículo en Inglés | MEDLINE | ID: mdl-28442542

RESUMEN

BACKGROUND: Recent findings suggesting that Abelson helper integration site 1 (AHI1) is involved in non-syndromic retinal disease have been debated, as the functional significance of identified missense variants was uncertain. We assessed whether AHI1 variants cause non-syndromic retinitis pigmentosa (RP). METHODS: Exome sequencing was performed in three probands with RP. The effects of the identified missense variants in AHI1 were predicted by three-dimensional structure homology modelling. Ciliary parameters were evaluated in patient's fibroblasts, and recombinant mutant proteins were expressed in ciliated retinal pigmented epithelium cells. RESULTS: In the three patients with RP, three sets of compound heterozygous variants were detected in AHI1 (c.2174G>A; p.Trp725* and c.2258A>T; p.Asp753Val, c.660delC; p.Ser221Glnfs*10 and c.2090C>T; p.Pro697Leu, c.2087A>G; p.His696Arg and c.2429C>T; p.Pro810Leu). All four missense variants were present in the conserved WD40 domain of Jouberin, the ciliary protein encoded by AHI1, with variable predicted implications for the domain structure. No significant changes in the percentage of ciliated cells, nor in cilium length or intraflagellar transport were detected. However, expression of mutant recombinant Jouberin in ciliated cells showed a significantly decreased enrichment at the ciliary base. CONCLUSIONS: This report confirms that mutations in AHI1 can underlie autosomal recessive RP. Moreover, it structurally and functionally validates the effect of the RP-associated AHI1 variants on protein function, thus proposing a new genotype-phenotype correlation for AHI1 mutation associated retinal ciliopathies.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/genética , Mutación Missense , Retinitis Pigmentosa/genética , Anomalías Múltiples/genética , Proteínas Adaptadoras Transductoras de Señales/química , Proteínas Adaptadoras del Transporte Vesicular , Adulto , Cerebelo/anomalías , Anomalías del Ojo/genética , Femenino , Humanos , Enfermedades Renales Quísticas/genética , Masculino , Persona de Mediana Edad , Linaje , Dominios Proteicos/genética , Retina/anomalías
12.
Hum Mol Genet ; 24(13): 3742-51, 2015 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-25859010

RESUMEN

Retinitis pigmentosa (RP), the most common form of inherited retinal degeneration, is clinically and genetically heterogeneous and can appear as syndromic or non-syndromic. Mucopolysaccharidosis type IIIC (MPS IIIC) is a lethal disorder, caused by mutations in the heparan-alpha-glucosaminide N-acetyltransferase (HGSNAT) gene and characterized by progressive neurological deterioration, with retinal degeneration as a prominent feature. We identified HGSNAT mutations in six patients with non-syndromic RP. Whole exome sequencing (WES) in an Ashkenazi Jewish Israeli RP patient revealed a novel homozygous HGSNAT variant, c.370A>T, which leads to partial skipping of exon 3. Screening of 66 Ashkenazi RP index cases revealed an additional family with two siblings homozygous for c.370A>T. WES in three Dutch siblings with RP revealed a complex HGSNAT variant, c.[398G>C; 1843G>A] on one allele, and c.1843G>A on the other allele. HGSNAT activity levels in blood leukocytes of patients were reduced compared with healthy controls, but usually higher than those in MPS IIIC patients. All patients were diagnosed with non-syndromic RP and did not exhibit neurological deterioration, or any phenotypic features consistent with MPS IIIC. Furthermore, four of the patients were over 60 years old, exceeding by far the life expectancy of MPS IIIC patients. HGSNAT is highly expressed in the mouse retina, and we hypothesize that the retina requires higher HGSNAT activity to maintain proper function, compared with other tissues associated with MPS IIIC, such as the brain. This report broadens the spectrum of phenotypes associated with HGSNAT mutations and highlights the critical function of HGSNAT in the human retina.


Asunto(s)
Acetiltransferasas/genética , Mucopolisacaridosis III/enzimología , Mutación Puntual , Retinitis Pigmentosa/enzimología , Adulto , Anciano , Animales , Enfermedades Asintomáticas , Secuencia de Bases , Exones , Femenino , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Persona de Mediana Edad , Datos de Secuencia Molecular , Mucopolisacaridosis III/genética , Linaje , Retina/enzimología , Retinitis Pigmentosa/genética
13.
Ophthalmology ; 124(7): 992-1003, 2017 07.
Artículo en Inglés | MEDLINE | ID: mdl-28412069

RESUMEN

PURPOSE: To identify the genetic cause of and describe the phenotype in 4 families with autosomal recessive retinitis pigmentosa (arRP) that can be associated with pseudocoloboma. DESIGN: Case series. PARTICIPANTS: Seven patients from 4 unrelated families with arRP, among whom 3 patients had bilateral early-onset macular pseudocoloboma. METHODS: We performed homozygosity mapping and whole-exome sequencing in 5 probands and 2 unaffected family members from 4 unrelated families. Subsequently, Sanger sequencing and segregation analysis were performed in additional family members. We reviewed the medical history of individuals carrying IDH3A variants and performed additional ophthalmic examinations, including full-field electroretinography, fundus photography, fundus autofluorescence imaging, and optical coherence tomography. MAIN OUTCOME MEASURES: IDH3A variants, age at diagnosis, visual acuity, fundus appearance, visual field, and full-field electroretinography, fundus autofluorescence, and optical coherence tomography findings. RESULTS: We identified 7 different variants in IDH3A in 4 unrelated families, that is, 5 missense, 1 nonsense, and 1 frameshift variant. All participants showed symptoms early in life, ranging from night blindness to decreased visual acuity, and were diagnosed between the ages of 1 and 11 years. Four participants with biallelic IDH3A variants displayed a typical arRP phenotype and 3 participants were diagnosed with arRP and pseudocoloboma of the macula. CONCLUSIONS: IDH3A variants were identified as a novel cause of typical arRP in some individuals associated with macular pseudocoloboma. We observed both phenotypes in 2 siblings carrying the same compound heterozygous variants, which could be explained by variable disease expression and warrants caution when making assertions about genotype-phenotype correlations.


Asunto(s)
Coloboma/genética , ADN/genética , Proteínas del Ojo/genética , Estudios de Asociación Genética , Mácula Lútea/patología , Mutación , Retinitis Pigmentosa/genética , Adolescente , Adulto , Niño , Preescolar , Coloboma/diagnóstico , Coloboma/metabolismo , Análisis Mutacional de ADN , Electrorretinografía , Exoma , Proteínas del Ojo/metabolismo , Femenino , Genes Recesivos , Homocigoto , Humanos , Masculino , Linaje , Fenotipo , Retinitis Pigmentosa/diagnóstico , Retinitis Pigmentosa/metabolismo , Tomografía de Coherencia Óptica , Agudeza Visual , Campos Visuales , Adulto Joven
14.
Transfusion ; 57(2): 423-432, 2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-27891625

RESUMEN

BACKGROUND: Genotyping platforms for common red blood cell (RBC) antigens have been successfully applied in Caucasian and black populations but not in Chinese populations. In this study, a genotyping assay based on multiplex ligation-dependent probe amplification (MLPA) technology was applied in a Chinese population to validate the MLPA probes. Subsequently, the comprehensive distribution of 17 blood group systems also was obtained. STUDY DESIGN AND METHODS: DNA samples from 200 Chinese donors were extracted and genotyped using the blood-MLPA assay. To confirm the MLPA results, a second independent genotyping assay (ID Core+) was conducted in 40 donors, and serological typing of 14 blood-group antigens was performed in 91 donors. In donors who had abnormal copy numbers of an allele (DI and GYPB) determined by MLPA, additional experiments were performed (polymerase chain reaction, sequencing, and flow cytometry analysis). RESULTS: The genotyping results obtained using the blood-MLPA and ID Core+ assays were consistent. Serological data were consistent with the genotyping results except for one donor who had a Lu(a-b-) phenotype. Of the 17 blood group systems, the distribution of the MNS, Duffy, Kidd, Diego, Yt, and Dombrock systems was polymorphic. The Mur and Sta antigens of the MNS system were distributed with a frequency of 9% (18 of 200) and 2% (4 of 200), respectively. One donor with chimerism and one who carried a novel DI*02(A845V) allele, which predicts the depression of Dib antigen expression, were identified. CONCLUSIONS: The blood-MLPA assay could easily identify the common blood-group alleles and correctly predicted phenotype in the Chinese population. The Mur and Sta antigens were distributed with high frequency in a Southern Chinese Han population.


Asunto(s)
Alelos , Pueblo Asiatico/genética , Antígenos de Grupos Sanguíneos/genética , Frecuencia de los Genes , Reacción en Cadena de la Polimerasa Multiplex , Pueblo Asiatico/etnología , China/etnología , Femenino , Humanos , Masculino
15.
Br J Haematol ; 173(3): 469-79, 2016 05.
Artículo en Inglés | MEDLINE | ID: mdl-27018217

RESUMEN

To guide anti-D prophylaxis, Dutch D- pregnant women are offered a quantitative fetal-RHD-genotyping assay to determine the RHD status of their fetus. This allowed us to determine the frequency of different maternal RHD variants in 37 782 serologically D- pregnant women. A variant allele is present in at least 0·96% of Dutch D- pregnant women The D- serology could be confirmed after further serological testing in only 54% of these women, which emphasizes the potential relevance of genotyping of blood donors. 43 different RHD variant alleles were detected, including 15 novel alleles (11 null-, 2 partial D- and 2 DEL-alleles). Of those novel null alleles, one allele contained a single missense mutation (RHD*443C>G) and one allele had a single amino acid deletion (RHD*424_426del). The D- phenotype was confirmed by transduction of human D- erythroblasts, consolidating that, for the first time, a single amino acid change or deletion causes the D- phenotype. Transduction also confirmed the phenotypes for the two new variant DEL-alleles (RHD*721A>C and RHD*884T>C) and the novel partial RHD*492C>A allele. Notably, in three additional cases the DEL phenotype was observed but sequencing of the coding sequence, flanking introns and promoter region revealed an apparently wild-type RHD allele without mutations.


Asunto(s)
Frecuencia de los Genes , Variación Genética , Sistema del Grupo Sanguíneo Rh-Hr/genética , Globulina Inmune rho(D)/genética , Alelos , Femenino , Enfermedades Fetales/diagnóstico , Enfermedades Fetales/genética , Genotipo , Humanos , Mutación , Países Bajos , Fenotipo , Embarazo
16.
Transfusion ; 56(9): 2314-21, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27338008

RESUMEN

BACKGROUND: The RHCE allele is highly polymorphic; more than 60 variants have been described leading to diminished expression of C, c, E, and e antigens. Not much is known about the prevalence of RHCE variants in the Chinese population. Individuals carrying a variant are at risk to develop alloantibodies in response to mismatched pregnancy or transfusion. In this study, phenotyping and genotyping of the RHCE allele in Chinese donors revealed a new clinically relevant mutation. STUDY DESIGN AND METHODS: Blood samples from 200 D- and 200 D+ Chinese donors were analyzed by the RH multiplex ligation-dependent probe amplification (MLPA) assay and compared to serologically typed RhCE phenotypes, when available. All exons of the RHCE gene were sequenced in samples with aberrant genotyping results. The phenotype of the new variant RHCE allele was tested by transducing cultured human erythroblasts. RESULTS: Aberrant copy numbers for Exon 2 of the RHCE gene were discovered by MLPA in six D- donors (6/200), but not in D+ donors (0/200). Sequencing of the RHCE gene in these six donors identified a new variant RHCE*ce308C>T (p.103Pro>Leu) allele with an allele frequency of 0.015 within the D- individuals in this study. This variant was not detected in D+ individuals showing linkage with the D- haplotype. Serologically weak C expression and loss of c expression was demonstrated on donor red blood cells. In vitro transfection studies of the RHCE*ce308T variant in cDe/ce and CDe/CDe erythroblasts confirmed that the variant is associated with anti-C reactivity while abolishing c expression. CONCLUSION: Genotyping of individuals carrying this variant by standard RHCE genotyping might falsely predict a C- phenotype or a c+ phenotype. This new variant should be taken into account in RHCE genotyping assays designed for the Chinese population.


Asunto(s)
Alelos , Sistema del Grupo Sanguíneo Rh-Hr/genética , Pueblo Asiatico/genética , Exones/genética , Frecuencia de los Genes/genética , Genotipo , Haplotipos/genética , Humanos , Reacción en Cadena de la Polimerasa Multiplex , Fenotipo
17.
Transfusion ; 55(2): 413-21, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25156717

RESUMEN

BACKGROUND: Alloantibodies directed against antigens of the Kell blood group system are clinically significant. In the Netherlands, the KEL1 antigen is determined in all blood donors. In this study, after phenotyping of KEL:1-positive donors, genotyping analysis was conducted in KEL:1,-2 donors to identify possible KEL*02 variant alleles. STUDY DESIGN AND METHODS: A total of 407 donors with the KEL:1,-2 phenotype were genotyped for the KEL*01/02 polymorphism, followed by direct sequencing of the KEL gene if the KEL*02 allele was detected. Two K0 patients were also included. Transcript analysis was conducted in two probands with the KEL*02. M05 allele defined by a synonymous mutation (G573G). Flow cytometry analysis to determine the expression of Kell antigen was performed. RESULTS: Thirty KEL:1,-2 individuals (30/407, 7.4%) with discrepant KEL*01/02 genotype were identified. Seven novel alleles were identified: KEL*02(R86Q, R281W)mod, KEL*02(L133P)null, KEL*02(436delG)null, KEL*02(F418S)null, KEL*02(R492X)null, KEL*02(L611R)null, and KEL*02(R700X)null. Nine variant alleles described before were detected: KEL*02N.06, KEL*02N.15, KEL*02N.17, KEL*02N.19, KEL*02N.21, KEL*02M.02, KEL*02M.04, KEL*02M.05, and KEL*02(Q362K)mod. A transcript lacking Exon 16 was identified in two probands with the KEL*02M.05 allele as described before. Finally, flow cytometry analysis showed a decreased total Kell expression and a relatively increased KEL1 expression in individuals with the KEL:1,2null or KEL:1,2mod phenotype, compared to KEL:1,2 controls. CONCLUSION: In 7.4% of a group of tested KEL:1,-2 Dutch donors, a KEL*02null or KEL*02mod allele was found. A relatively increased KEL1 antigen expression in KEL:1,2null and KEL:1,2mod individuals suggest that the expression of Kell-XK complexes depends on the availability of the XK protein.


Asunto(s)
Alelos , Exones , Frecuencia de los Genes , Sitios Genéticos , Sistema del Grupo Sanguíneo de Kell/genética , Glicoproteínas de Membrana/genética , Metaloendopeptidasas/genética , Femenino , Regulación de la Expresión Génica/genética , Humanos , Sistema del Grupo Sanguíneo de Kell/metabolismo , Masculino , Glicoproteínas de Membrana/biosíntesis , Metaloendopeptidasas/biosíntesis , Mutación , Países Bajos
18.
Transfusion ; 55(6 Pt 2): 1457-66, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25647324

RESUMEN

BACKGROUND: Serologic determination of the Vel- phenotype is challenging due to variable Vel expression levels. In this study we investigated the genetic basis for weak Vel expression levels and developed a high-throughput genotyping assay to detect Vel- donors. STUDY DESIGN AND METHODS: In 548 random Caucasian and 107 Vel+(w) donors genetic variation in the SMIM1 gene was studied and correlated to Vel expression levels. A total of 3366 Caucasian, 621 black, and 333 Chinese donors were screened with a high-throughput genotyping assay targeting the SMIM1*64_80del allele. RESULTS: The Vel+(w) phenotype is in most cases caused by the presence of one SMIM1 allele carrying the major allele of the rs1175550 SNP in combination with a SMIM1*64_80del allele or in few cases caused by the presence of the SMIM1*152T>A or SMIM1*152T>G allele. In approximately 6% of Vel+(w) donors genetic factors in SMIM1 could not explain the weak expression. We excluded the possibility that lack of expression of another blood group system was correlated with weak Vel expression levels. Furthermore, using a high-throughput Vel genotyping assay we detected two Caucasian Vel- donors. CONCLUSION: Weak Vel expression levels are caused by multiple genetic factors in SMIM1 and probably also by other genetic or environmental factors. Due to the variation in Vel expression levels, serologic determination of the Vel- phenotype is difficult and a genotyping assay targeting the c.64_80del deletion in SMIM1 should be used to screen donors for the Vel- phenotype.


Asunto(s)
Antígenos de Grupos Sanguíneos/genética , Variación Genética , Proteínas de la Membrana/genética , Alelos , Donantes de Sangre/estadística & datos numéricos , Genotipo , Células HEK293 , Humanos , Fenotipo , Polimorfismo de Nucleótido Simple , Grupos Raciales/genética , Análisis de Secuencia de ADN , Eliminación de Secuencia , Transfección
19.
Transfusion ; 54(7): 1836-46, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24456066

RESUMEN

BACKGROUND: Individuals with anti-Jr(a) or anti-Lan are ideally transfused with rare Jr(a-) or Lan- red blood cells. We characterized mutations in Dutch Jr(a-) and Lan- individuals and developed a high-throughput genotyping assay to detect Jr(a-) and Lan- donors. STUDY DESIGN AND METHODS: Six Jr(a-) and seven Lan- persons, who all made anti-Jr(a) or anti-Lan, were sequenced for ABCG2 or ABCB6 and the copy number of ABCG2 and ABCB6 was determined. A total of 3366 Caucasian, 621 black, and 333 Chinese donors were screened with a high-throughput screening assay targeting frequently occurring mutations causing the Jr(a-) or Lan- phenotype. RESULTS: In the six tested Jr(a-) individuals previously described, c.376C > T, c.706C > T, and c.736C > T nonsense mutations in ABCG2 were detected. In the seven Lan- individuals 12 different mutations, of which 10 underlie the Lan- phenotype, were detected. No copy number variation was detected for ABCG2 and ABCB6. The high-throughput screening assay detected five Caucasian donors heterozygous for the c.706C > T or 736C > T mutation in ABCG2 and nine Caucasian donors heterozygous for the 574C > T mutation in ABCB6. No black or Chinese donors were found positive for a mutation. CONCLUSION: We describe eight new mutations in ABCB6 of which seven, including three missense mutations, underlie the Lan- phenotype and determine that a complete gene deletion of ABCG2 or ABCB6 is not responsible for the Jr(a-) or Lan- phenotype, respectively. The extended heterogeneity of mutations causing the Jr(a-) or Lan- phenotype in most populations makes genetic screening for the Jr(a-) and Lan- phenotype inefficient in those populations.


Asunto(s)
Donantes de Sangre , Antígenos de Grupos Sanguíneos/genética , Antígenos de Grupos Sanguíneos/inmunología , Técnicas de Genotipaje , Ensayos Analíticos de Alto Rendimiento/métodos , Isoantígenos/inmunología , Análisis de Secuencia de ADN/métodos , Transportador de Casetes de Unión a ATP, Subfamilia G, Miembro 2 , Transportadoras de Casetes de Unión a ATP/genética , Alelos , Pueblo Asiatico/genética , Secuencia de Bases , Población Negra/genética , Selección de Donante , Humanos , Inmunización , Isoantígenos/genética , Datos de Secuencia Molecular , Mutación , Proteínas de Neoplasias/genética , Países Bajos , Sudáfrica , Población Blanca/genética
20.
Eur J Hum Genet ; 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38806661

RESUMEN

INPP5E encodes inositol polyphosphate-5-phosphatase E, an enzyme involved in regulating the phosphatidylinositol (PIP) makeup of the primary cilium membrane. Pathogenic variants in INPP5E hence cause a variety of ciliopathies: genetic disorders caused by dysfunctional cilia. While the majority of these disorders are syndromic, such as the neuronal ciliopathy Joubert syndrome, in some cases patients will present with an isolated phenotype-most commonly non-syndromic retinitis pigmentosa (RP). Here, we report two novel variants in INPP5E identified in two patients with non-syndromic RP: patient 1 with compound heterozygous variants (c.1516C > T, p.(Q506*), and c.847G > A, p.(A283T)) and patient 2 with a homozygous variant (c.1073C > T, p.(P358L)). To determine whether these variants were causative for the phenotype in the patients, automated ciliary phenotyping of patient-derived dermal fibroblasts was performed for percent ciliation, cilium length, retrograde IFT trafficking, and INPP5E localization. In both patients, a decrease in ciliary length and loss of INPP5E localization in the primary cilia were seen. With these molecular findings, we can confirm functionally that the novel variants in INPP5E are causative for the RP phenotypes seen in both patients. Additionally, this study demonstrates the usefulness of utilizing ciliary phenotyping as an assistant in ciliopathy diagnosis and phenotyping.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA