Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Neural Comput ; 33(3): 713-763, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33626312

RESUMEN

Active inference offers a first principle account of sentient behavior, from which special and important cases-for example, reinforcement learning, active learning, Bayes optimal inference, Bayes optimal design-can be derived. Active inference finesses the exploitation-exploration dilemma in relation to prior preferences by placing information gain on the same footing as reward or value. In brief, active inference replaces value functions with functionals of (Bayesian) beliefs, in the form of an expected (variational) free energy. In this letter, we consider a sophisticated kind of active inference using a recursive form of expected free energy. Sophistication describes the degree to which an agent has beliefs about beliefs. We consider agents with beliefs about the counterfactual consequences of action for states of affairs and beliefs about those latent states. In other words, we move from simply considering beliefs about "what would happen if I did that" to "what I would believe about what would happen if I did that." The recursive form of the free energy functional effectively implements a deep tree search over actions and outcomes in the future. Crucially, this search is over sequences of belief states as opposed to states per se. We illustrate the competence of this scheme using numerical simulations of deep decision problems.

2.
Nat Neurosci ; 22(11): 1761-1770, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31659335

RESUMEN

Systems neuroscience seeks explanations for how the brain implements a wide variety of perceptual, cognitive and motor tasks. Conversely, artificial intelligence attempts to design computational systems based on the tasks they will have to solve. In artificial neural networks, the three components specified by design are the objective functions, the learning rules and the architectures. With the growing success of deep learning, which utilizes brain-inspired architectures, these three designed components have increasingly become central to how we model, engineer and optimize complex artificial learning systems. Here we argue that a greater focus on these components would also benefit systems neuroscience. We give examples of how this optimization-based framework can drive theoretical and experimental progress in neuroscience. We contend that this principled perspective on systems neuroscience will help to generate more rapid progress.


Asunto(s)
Inteligencia Artificial , Aprendizaje Profundo , Redes Neurales de la Computación , Animales , Encéfalo/fisiología , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA