Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
ACS Eng Au ; 3(2): 84-90, 2023 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-37096174

RESUMEN

We provide strong evidence that the amounts of phenolic aldehydes (vanillin and p-hydroxybenzaldehyde, pHB) selectively released during rapid ozonolysis of grass lignins are correlated with the unsubstituted aryl carbons of lignin-carbohydrate complexes present in these lignins. In the case of acetosolv lignin from corn stover, we observed a steady yield of vanillin and pHB (cumulatively ∼5 wt % of the initial lignin). We demonstrate the continuous ozonolysis of the lignin in a spray reactor at ambient temperature and pressure. In sharp contrast, similar ozonolysis of acetosolv lignin from corn cobs resulted in a twofold increase in the combined yield (∼10 wt %) of vanillin and pHB. Structural analysis with 1H-13C heteronuclear single quantum coherence (HSQC) nuclear magnetic resonance revealed that signals assigned to unsubstituted aryl carbons of lignin-carbohydrate complexes are quantitatively correlated to phenolic aldehyde production from spray ozonolysis. The ratios of the integrated peak volumes corresponding to coumarates and ferulates in the HSQC spectra of cob and corn stover lignins (SLs) are 2.4 and 2.0, respectively. These ratios are nearly identical to the observed 2.3-fold increase in pHB and 1.8-fold increase in vanillin production rates from corn cob lignin compared to corn SL. Considering that the annual U.S. lignin capacity from these grass lignin sources is ∼60 million MT, the value creation potential from these flavoring agents is conservatively ∼$50 million annually from just 10% of the lignin. These new insights into structure/product correlation and spray reactor characteristics provide rational guidance for developing viable technologies to valorize grass lignins.

2.
Chem Commun (Camb) ; (19): 2444-5, 2003 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-14587723

RESUMEN

The formation of micelles in 1-butyl-3-methyl imidazolium chloride (BMIM-Cl) and hexafluorophosphate (BMIM-PF6) were explored using different surfactants and the solvation behavior of the new micellar-ionic liquid solutions examined using inverse gas chromatography.


Asunto(s)
Fluoruros/química , Imidazoles/química , Micelas , Fosfatos/química , Tensoactivos/química , Cromatografía de Gases/instrumentación , Cromatografía Capilar Electrocinética Micelar/instrumentación , Iones/química , Soluciones , Solventes/química
5.
Nano Lett ; 7(2): 233-7, 2007 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-17243748

RESUMEN

Thiol-ene photopolymers were studied as patternable resins for nanocontact molding imprint lithography. Photopolymerizable thiol and ene monomer mixtures were used, and after molding, patterned thiol-ene polymer features the size and shape of the original molds were replicated. Adhesion and release were examined and controlled by manipulating the surface chemistry of the substrate and mold. A direct correlation between cured thiol-ene polymer modulus and pattern fidelity was observed.

6.
J Am Chem Soc ; 125(13): 3831-8, 2003 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-12656616

RESUMEN

A novel approach is presented for manipulating the size and chemistry of nanoscopic features using a combination of contact molding and living free radical polymerization. In this approach a highly cross-linked photopolymer, based on a methacrylate/acrylate mixture, was patterned into submicrometer-sized features on a silicon wafer using a contact-molding technique. A critical component of the monomer mixture was the incorporation of an initiator containing monomer into the network structure, which provides sites for functional group amplification. Features ranging in size from 5 microm to <60 nm were accurately replicated by this process and living free radical polymerizations, both atom transfer radical and nitroxide-mediated polymerization (NMP), could be conducted from these initiating sites to yield polymer brushes which represent a grafted layer of linear chains attached to the original network polymer. Grafts consisting of polystyrene, poly(methyl methacrylate), and poly(2-hydroxyethyl)methacrylate were grown with controlled thicknesses ranging from 10 to 143 nm and graft molecular weights of between 18 000 to 290 000 amu. As a result of this secondary graft process, feature sizes could be tuned from the original 100 nm down to 20 nm, and the surface chemistry varied from hydrophilic to hydrophobic starting from the same initial master pattern. The thin films and patterned features were characterized by contact angle, ellipsometry, optical, and atomic force microscopies.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA