Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
J Exp Biol ; 219(Pt 11): 1603-7, 2016 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-26994180

RESUMEN

To understand how organisms adapt, researchers must link performance and microhabitat. However, measuring performance, especially maximum performance, can sometimes be difficult. Here, we describe an improvement over previous techniques that only consider the largest observed values as maxima. Instead, we model expected performance observations via the Weibull distribution, a statistical approach that reduces the impact of rare observations. After calculating group-level weighted averages and variances by treating individuals separately to reduce pseudoreplication, our approach resulted in high statistical power despite small sample sizes. We fitted lizard adhesive performance and bite force data to the Weibull distribution and found that it closely estimated maximum performance in both cases, illustrating the generality of our approach. Using the Weibull distribution to estimate observed performance greatly improves upon previous techniques by facilitating power analyses and error estimations around robustly estimated maximum values.


Asunto(s)
Modelos Biológicos , Modelos Estadísticos , Animales , Fenómenos Biomecánicos , Fuerza de la Mordida , Lagartos/fisiología
2.
Integr Org Biol ; 4(1): obac028, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35999968

RESUMEN

Urbanization, despite its destructive effects on natural habitats, offers species an opportunity to colonize novel niches. Previous research found that urban Anolis lizards in Puerto Rico had increased adhesive toepad area and more ventral toepad scales, traits that are likely adaptive and genetically based. We further investigated these phenotypic changes using geometric morphometrics to measure differences in toe shape, toepad shape, and lamellar morphology. Our results indicate that the increased toepad area of urban Anolis cristatellus lizards in Puerto Rico is not simply an isometric increase in toe size. Toes of urban populations exhibit multiple disproportional changes compared to forest lizards, with a larger proportion of the toe length covered in adhesive toepad. In addition, the toepads of urban lizards increase more in length than width. Lastly, lizards in urban populations exhibit both increased number of lamellae as well as increased spacing between individual lamellae. We also observed regional variation, with urban specimens having significantly more disparity, suggesting similar processes of urban adaptation are likely happening in parallel across the island, yet with region-specific idiosyncrasies, possibly generating more variation in toepad morphology across urban specimens as compared to forest specimens. Considering the use of geometric morphometrics, we found that specimen preparation, specifically how flat and straight toes are during imaging, to be an important factor affecting our data, more so than specimen size or any other meaningful morphological variation. In addition, we found that landmark and semilandmark data can be used to directly estimate toepad area, offering the opportunity to streamline future studies. In conclusion, our results highlight the value of considering toepad morphology in more detail beyond adhesive pad area or number of lamellae. Geometric morphometrics tools may be employed to elucidate subtle differences in shape to better allow researchers to connect changes in morphology to ecology and adhesive performance.

3.
PLoS One ; 12(9): e0184641, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28953920

RESUMEN

Ecomorphology links microhabitat and morphology. By comparing ecomorphological associations across clades, we can investigate the extent to which evolution can produce similar solutions in response to similar challenges. While Anolis lizards represent a well-studied example of repeated convergent evolution, very few studies have investigated the ecomorphology of geckos. Similar to anoles, gekkonid lizards have independently evolved adhesive toe pads and many species are scansorial. We quantified gecko and anole limb length and microhabitat use, finding that geckos tend to have shorter limbs than anoles. Combining these measurements with microhabitat observations of geckos in Queensland, Australia, we observed geckos using similar microhabitats as reported for anoles, but geckos with relatively longer limbs were using narrower perches, differing from patterns observed in anoles and other lizards. We also observed arboreal geckos with relatively shorter proximal limb segments as compared to rock-dwelling and terrestrial geckos, similar to patterns observed for other lizards. We conclude that although both geckos and anoles have adhesive pads and use similar microhabitats, their locomotor systems likely complement their adhesive pads in unique ways and result in different ecomorphological patterns, reinforcing the idea that species with convergent morphologies still have idiosyncratic characteristics due to their own separate evolutionary histories.


Asunto(s)
Ecosistema , Lagartos/anatomía & histología , Dedos del Pie/fisiología , Animales , Lagartos/fisiología , Queensland
4.
Evolution ; 71(10): 2344-2358, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28745397

RESUMEN

Understanding macroevolutionary dynamics of trait evolution is an important endeavor in evolutionary biology. Ecological opportunity can liberate a trait as it diversifies through trait space, while genetic and selective constraints can limit diversification. While many studies have examined the dynamics of morphological traits, diverse morphological traits may yield the same or similar performance and as performance is often more proximately the target of selection, examining only morphology may give an incomplete understanding of evolutionary dynamics. Here, we ask whether convergent evolution of pad-bearing lizards has followed similar evolutionary dynamics, or whether independent origins are accompanied by unique constraints and selective pressures over macroevolutionary time. We hypothesized that geckos and anoles each have unique evolutionary tempos and modes. Using performance data from 59 species, we modified Brownian motion (BM) and Ornstein-Uhlenbeck (OU) models to account for repeated origins estimated using Bayesian ancestral state reconstructions. We discovered that adhesive performance in geckos evolved in a fashion consistent with Brownian motion with a trend, whereas anoles evolved in bounded performance space consistent with more constrained evolution (an Ornstein-Uhlenbeck model). Our results suggest that convergent phenotypes can have quite distinctive evolutionary patterns, likely as a result of idiosyncratic constraints or ecological opportunities.


Asunto(s)
Evolución Molecular , Lagartos/genética , Selección Genética , Dedos del Pie/fisiología , Animales , Lagartos/anatomía & histología , Lagartos/fisiología , Modelos Genéticos , Dedos del Pie/anatomía & histología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA