Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Nature ; 596(7870): 97-102, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34290404

RESUMEN

Infection-induced aversion against enteropathogens is a conserved sickness behaviour that can promote host survival1,2. The aetiology of this behaviour remains poorly understood, but studies in Drosophila have linked olfactory and gustatory perception to avoidance behaviours against toxic microorganisms3-5. Whether and how enteric infections directly influence sensory perception to induce or modulate such behaviours remains unknown. Here we show that enteropathogen infection in Drosophila can modulate olfaction through metabolic reprogramming of ensheathing glia of the antennal lobe. Infection-induced unpaired cytokine expression in the intestine activates JAK-STAT signalling in ensheathing glia, inducing the expression of glial monocarboxylate transporters and the apolipoprotein glial lazarillo (GLaz), and affecting metabolic coupling of glia and neurons at the antennal lobe. This modulates olfactory discrimination, promotes the avoidance of bacteria-laced food and increases fly survival. Although transient in young flies, gut-induced metabolic reprogramming of ensheathing glia becomes constitutive in old flies owing to age-related intestinal inflammation, which contributes to an age-related decline in olfactory discrimination. Our findings identify adaptive glial metabolic reprogramming by gut-derived cytokines as a mechanism that causes lasting changes in a sensory system in ageing flies.


Asunto(s)
Envejecimiento/metabolismo , Citocinas/metabolismo , Drosophila melanogaster/metabolismo , Intestinos , Neuroglía/metabolismo , Olfato/fisiología , Animales , Reacción de Prevención , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/microbiología , Femenino , Inflamación/metabolismo , Inflamación/microbiología , Intestinos/microbiología , Quinasas Janus/metabolismo , Ácido Láctico/metabolismo , Metabolismo de los Lípidos , Neuronas/metabolismo , Pectobacterium carotovorum , Factores de Transcripción STAT/metabolismo , Transducción de Señal , Tasa de Supervivencia , Factores de Transcripción/metabolismo
2.
STAR Protoc ; 3(2): 101377, 2022 06 17.
Artículo en Inglés | MEDLINE | ID: mdl-35634356

RESUMEN

In the fly brain, neurodegeneration is detected by the presence of vacuoles using conventional hematoxylin and eosin (H&E) or phalloidin staining, which are lengthy and expensive processes. Here, we present a faster and cost-effective 2-day protocol to visualize vacuoles in a fly model of Alzheimer disease. We describe eosin staining in the whole-brain mount, followed by confocal microscopy and image analysis with an open source Fiji plugin. This protocol can be applied to visualize different modules in the fly brain.


Asunto(s)
Enfermedad de Alzheimer , Enfermedad de Alzheimer/diagnóstico , Encéfalo/diagnóstico por imagen , Eosina Amarillenta-(YS) , Hematoxilina , Humanos , Coloración y Etiquetado
3.
Hum Mol Genet ; 17(24): 3965-74, 2008 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-18801879

RESUMEN

In a systematic sequencing screen of synaptic genes on the X chromosome, we have identified an autistic female without mental retardation (MR) who carries a de novo frameshift Ile367SerfsX6 mutation in Interleukin-1 Receptor Accessory Protein-Like 1 (IL1RAPL1), a gene implicated in calcium-regulated vesicle release and dendrite differentiation. We showed that the function of the resulting truncated IL1RAPL1 protein is severely altered in hippocampal neurons, by measuring its effect on neurite outgrowth activity. We also sequenced the coding region of the close related member IL1RAPL2 and of NCS-1/FREQ, which physically interacts with IL1RAPL1, in a cohort of subjects with autism. The screening failed to identify non-synonymous variant in IL1RAPL2, whereas a rare missense (R102Q) in NCS-1/FREQ was identified in one autistic patient. Furthermore, we identified by comparative genomic hybridization a large intragenic deletion of exons 3-7 of IL1RAPL1 in three brothers with autism and/or MR. This deletion causes a frameshift and the introduction of a premature stop codon, Ala28GlufsX15, at the very beginning of the protein. All together, our results indicate that mutations in IL1RAPL1 cause a spectrum of neurological impairments ranging from MR to high functioning autism.


Asunto(s)
Trastorno Autístico/genética , Calcio/fisiología , Proteína Accesoria del Receptor de Interleucina-1/genética , Eliminación de Secuencia/genética , Animales , Síndrome de Asperger/genética , Síndrome de Asperger/patología , Trastorno Autístico/patología , Secuencia de Bases , Diferenciación Celular/genética , Línea Celular , Niño , Codón sin Sentido/genética , Femenino , Mutación del Sistema de Lectura , Tamización de Portadores Genéticos , Hipocampo/metabolismo , Hipocampo/patología , Humanos , Discapacidad Intelectual/genética , Discapacidad Intelectual/patología , Proteína Accesoria del Receptor de Interleucina-1/fisiología , Masculino , Neuritas/metabolismo , Neuritas/patología , Linaje , Ratas
4.
Nat Commun ; 10(1): 1085, 2019 03 06.
Artículo en Inglés | MEDLINE | ID: mdl-30842428

RESUMEN

Neuronal communication across synapses relies on neurotransmitter release from presynaptic active zones (AZs) followed by postsynaptic transmitter detection. Synaptic plasticity homeostatically maintains functionality during perturbations and enables memory formation. Postsynaptic plasticity targets neurotransmitter receptors, but presynaptic mechanisms regulating the neurotransmitter release apparatus remain largely enigmatic. By studying Drosophila neuromuscular junctions (NMJs) we show that AZs consist of nano-modular release sites and identify a molecular sequence that adds modules within minutes of inducing homeostatic plasticity. This requires cognate transport machinery and specific AZ-scaffolding proteins. Structural remodeling is not required for immediate potentiation of neurotransmitter release, but necessary to sustain potentiation over longer timescales. Finally, mutations in Unc13 disrupting homeostatic plasticity at the NMJ also impair short-term memory when central neurons are targeted, suggesting that both plasticity mechanisms utilize Unc13. Together, while immediate synaptic potentiation capitalizes on available material, it triggers the coincident incorporation of modular release sites to consolidate synaptic potentiation.


Asunto(s)
Proteínas de Drosophila/metabolismo , Potenciación a Largo Plazo/fisiología , Proteínas de la Membrana/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Unión Neuromuscular/metabolismo , Neurotransmisores/metabolismo , Terminales Presinápticos/metabolismo , Animales , Animales Modificados Genéticamente , Conducta Animal , Proteínas de Drosophila/genética , Drosophila melanogaster/fisiología , Femenino , Masculino , Proteínas de la Membrana/genética , Memoria a Corto Plazo/fisiología , Modelos Animales , Cuerpos Pedunculados/citología , Cuerpos Pedunculados/metabolismo , Proteínas del Tejido Nervioso/genética , Técnicas de Placa-Clamp , Transmisión Sináptica/fisiología , Vesículas Sinápticas/metabolismo
5.
J Cell Biol ; 185(4): 713-25, 2009 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-19451277

RESUMEN

Bone morphogenic protein (BMP) signaling is essential for the coordinated assembly of the synapse, but we know little about how BMP signaling is modulated in neurons. Our findings indicate that the Nemo (Nmo) kinase modulates BMP signaling in motor neurons. nmo mutants show synaptic structural defects at the Drosophila melanogaster larval neuromuscular junction, and providing Nmo in motor neurons rescues these defects. We show that Nmo and the BMP transcription factor Mad can be coimmunoprecipitated and find a genetic interaction between nmo and Mad mutants. Moreover, we demonstrate that Nmo is required for normal distribution and accumulation of phosphorylated Mad in motor neurons. Finally, our results indicate that Nmo phosphorylation of Mad at its N terminus, distinct from the BMP phosphorylation site, is required for normal function of Mad. Based on our findings, we propose a model in which phosphorylation of Mad by Nmo ensures normal accumulation and distribution of Mad and thereby fine tunes BMP signaling in motor neurons.


Asunto(s)
Proteínas de Unión al ADN/fisiología , Proteínas de Drosophila/fisiología , Proteínas Quinasas Activadas por Mitógenos/fisiología , Unión Neuromuscular , Sinapsis , Factores de Transcripción/fisiología , Animales , Proteínas Morfogenéticas Óseas/metabolismo , Proteínas de Unión al ADN/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Neuronas Motoras , Fosforilación , Factores de Transcripción/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA