Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Int J Mol Sci ; 23(24)2022 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-36555439

RESUMEN

Multiple drugs are used to treat various indications as well as pesticides that are ingested unintentionally and enter the bloodstream. The residence time or bioavailability of these substances in circulation depends on several mechanisms, such as drug−drug interaction (DDI), drug−pesticide interaction, metabolizing enzymes and the hepatic and renal transport systems, involved in the elimination of the compounds from the body. One of these transporters is the Organic Cation Transporter 2 (OCT2) member of the solute carrier (SLC22) transporter family. OCT2 is highly expressed in the proximal tubule epithelial cells in human and mouse kidney, where it mediates the uptake of endogenous organic cations as well as numerous drugs and xenobiotics, and contributes to the first step of renal clearance. In this study, we examined OCT2 on two subjects: First, the transferability of data from mouse to human, since mice are initially examined in the development of new drugs to assess the renal excretion of organic cations. Second, to what extent the choice of substrate affects the properties of an inhibitor. For this purpose, the functional properties of hOCT2 and mOct2 were validated under the same experimental conditions with the known substrates metformin and 1-Methyl-4-phenylpyridinium iodide (MPP). While hOCT2 and mOct2 showed very low affinities for metformin with Km values of 3.9 mM and 3.5 mM, the affinity of hOCT2 and mOct2 for MPP (62 and 40 µM) was 64- and 89-fold higher, respectively. For our positive control inhibitor decynium22, we determined the following IC50 values for hOCT2 and mOct2: 2.2 and 2.6 µM for metformin uptake, and 16 and 6.9 µM for MPP uptake. A correlation analysis of the inhibitory effects of 13 drugs and 9 pesticides on hOCT2- and mOct2-mediated transport of metformin showed a correlation coefficient R2 of 0.88, indicating good interspecies correlation. Nevertheless, the bioenhancer elacridar and the fungicide imazalil showed species-dependent inhibitory potentials. Concentration-dependent inhibition of hOCT2- and mOct2-mediated metformin uptake by elacridar showed IC50 values of 20 µM and 1.9 µM and by imazalil 4.7 µM and 0.58 µM, respectively. In conclusion, although our data show comparable species-independent interactions for most compounds, there can be large species−specific differences in the interactions of individual compounds, which should be considered when extrapolating data from mice to humans. Furthermore, a comparison of the inhibitory potential of elacridar and imazalil on metformin uptake with that on MPP uptake reveals substrate-dependent differences in hOCT2 and mOct2 for both inhibitors. Therefore, it might be useful to test two different substrates in inhibition studies.


Asunto(s)
Metformina , Plaguicidas , Humanos , Ratones , Animales , Transportador 2 de Cátion Orgánico , Proteínas de Transporte de Catión Orgánico , Plaguicidas/farmacología , Metformina/farmacología , Cationes
2.
Trop Anim Health Prod ; 53(1): 54, 2021 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-33389207

RESUMEN

Poultry production contributes significantly to the livelihoods of Ethiopian farmers and to the national economy although it is hampered by different factors, including poultry diseases. There is scarcity of published evidences on the occurrence and impacts of poultry diseases although such evidences are important for policy makers in designing appropriate interventions. A total of 595 households were interviewed and 11 FGDs were conducted to collect data on the occurrence of diseases and the number of dead chickens in the last 12 months. Hence, respiratory diseases, sudden death, and eye-face-head diseases were mentioned in all of the FGDs as the most frequently occurring disease in the districts. Of households interviewed, 86.1% reported poultry disease occurrence in the last 12 months, and gastrointestinal, eye-face-head, and neurological diseases were identified to be the top three ranked diseases of chickens in the districts. Flocks with access to diagnostic services (Adj. OR = 4.16; P = 0.004) and/or access to animal health providers (Adj. OR = 10.50; P = 0.001) were more likely to report disease occurrence. In the studied population, the diseases resulted in deaths of 2219 chickens valued at 352,219.5 Birr (11,740.65 USD) and a mean crude mortality of 31.87%. Female-lead households (mean difference = 5.95%; P = 0.018) and multiple age units present on the farm (mean difference = 20.92%; P = < 0.000) had higher chicken mortality. Similarly, higher mortality was reported in flocks without access to diagnosis (mean difference = 9.97%; P = < 0.000) and vaccination (mean difference = 12.34%; P = < 0.000) services. The high occurrence of disease and mortalities might be explained by a lack of an organized poultry health service delivery system in the country. Therefore, a carefully designed health service delivery system addressing needs of poultry producers, supported by relevant policy and corresponding strategies, is recommended to address the indicated challenges. Moreover, private health providers with well-defined roles need to be engaged to successfully and sustainably solve the poultry disease problems.


Asunto(s)
Pollos , Granjas/estadística & datos numéricos , Enfermedades de las Aves de Corral/mortalidad , Crianza de Animales Domésticos , Animales , Estudios Transversales , Etiopía/epidemiología , Composición Familiar , Agricultores , Granjas/economía , Femenino , Humanos , Aves de Corral , Enfermedades de las Aves de Corral/economía , Productos Avícolas , Vacunación/veterinaria
3.
Int J Mol Sci ; 21(18)2020 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-32961667

RESUMEN

Extrapolation from animal to human data is not always possible, because several essential factors, such as expression level, localization, as well as the substrate selectivity and affinity of relevant transport proteins, can differ between species. In this study, we examined the interactions of drugs and pesticides with the clinically relevant organic cation transporter hOCT1 (SLC22A1) in comparison to the orthologous transporters from mouse and rat. We determined Km-values (73 ± 7, 36 ± 13, and 57 ± 5 µM) of human, mouse and rat OCT1 for the commonly used substrate 1-methyl-4-phenylpyridinium (MPP) and IC50-values of decynium22 (12.1 ± 0.8, 5.3 ± 0.4, and 10.5 ± 0.4 µM). For the first time, we demonstrated the interaction of the cationic fungicides imazalil, azoxystrobin, prochloraz, and propamocarb with human and rodent OCT1. Drugs such as ketoconazole, clonidine, and verapamil showed substantial inhibitory potential to human, mouse, and rat OCT1 activity. A correlation analysis of hOCT1 versus mouse and rat orthologs revealed a strong functional correlation between the three species. In conclusion, this approach shows that transporter interaction data are in many cases transferable between rodents and humans, but potential species differences for other drugs and pesticides could not be excluded, though it is recommendable to perform functional comparisons of human and rodent transporters for new molecular entities.


Asunto(s)
Proteínas de Transporte de Catecolaminas en la Membrana Plasmática/metabolismo , Clonidina/farmacología , Fungicidas Industriales/farmacología , Verapamilo/farmacología , Animales , Proteínas de Transporte de Catecolaminas en la Membrana Plasmática/antagonistas & inhibidores , Proteínas de Transporte de Catecolaminas en la Membrana Plasmática/genética , Interacciones Farmacológicas , Células HEK293 , Humanos , Ratones , Ratas , Especificidad de la Especie
4.
J Pharmacol Exp Ther ; 362(3): 450-458, 2017 09.
Artículo en Inglés | MEDLINE | ID: mdl-28630284

RESUMEN

In renal proximal tubule cells, the organic anion transporters 1 and 3 (OAT1 and OAT3) in the basolateral membrane and the multidrug resistance-associated protein 4 (MRP4) in the apical membrane share substrates and co-operate in renal drug secretion. We hypothesized that recently identified MRP4 inhibitors dantrolene, glafenine, nalidixic acid, and prazosin also interact with human OAT1 and/or OAT3 stably transfected in human embryonic kidney 293 cells. These four drugs were tested as possible inhibitors of p-[3H]aminohippurate (PAH) and [14C]glutarate uptake by OAT1, and of [3H]estrone-3-sulfate (ES) uptake by OAT3. In addition, we explored whether these drugs decrease the equilibrium distribution of radiolabeled PAH, glutarate, or ES, an approach intended to indirectly suggest drug/substrate exchange through OAT1 and OAT3. With OAT3, a dose-dependent inhibition of [3H]ES uptake and a downward shift in [3H]ES equilibrium were observed, indicating that all four drugs bind to OAT3 and may possibly be translocated. In contrast, the interaction with OAT1 was more complex. With [14C]glutarate as substrate, all four drugs inhibited uptake but only glafenine and nalidixic acid shifted glutarate equilibrium. Using [3H]PAH as a substrate of OAT1, nalidixic acid inhibited but dantrolene, glafenine, and prazosin stimulated uptake. Nalidixic acid decreased equilibrium content of [3H]PAH, suggesting that it may possibly be exchanged by OAT1. Taken together, OAT1 and OAT3 interact with the MRP4 inhibitors dantrolene, glafenine, nalidixic acid, and prazosin, indicating overlapping specificities. At OAT1, more than one binding site must be assumed to explain substrate and drug-dependent stimulation and inhibition of transport activity.


Asunto(s)
Dantroleno/metabolismo , Glafenina/metabolismo , Ácido Nalidíxico/metabolismo , Proteína 1 de Transporte de Anión Orgánico/metabolismo , Transportadores de Anión Orgánico Sodio-Independiente/metabolismo , Prazosina/metabolismo , Unión Competitiva , Técnicas de Cultivo de Célula , Estrona/análogos & derivados , Estrona/metabolismo , Células HEK293 , Humanos , Tasa de Depuración Metabólica , Proteína 1 de Transporte de Anión Orgánico/genética , Transportadores de Anión Orgánico Sodio-Independiente/genética , Unión Proteica , Ensayo de Unión Radioligante , Eliminación Renal , Especificidad por Sustrato , Transfección
5.
Pflugers Arch ; 468(11-12): 1909-1918, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-27812757

RESUMEN

Dantrolene is the only available drug for the treatment of malignant hyperthermia, a life-threatening inborn sensitivity of the ryanodine receptor (RyR1) in skeletal muscles to volatile anesthetics. Dantrolene is metabolized in the liver to 5-OH dantrolene. Both compounds are zwitterions or net negatively charged. Here, we investigated interactions of dantrolene and 5-OH dantrolene with solute carrier (SLC) family members occurring in skeletal muscle cells, hepatocytes, and renal proximal tubule cells. SLC22A8 (organic anion transporter 3, OAT3) was very sensitive to both compounds exhibiting IC50 values of 0.35 ± 0.03 and 1.84 ± 0.34 µM, respectively. These IC50 concentrations are well below the plasma concentration in patients treated with dantrolene (3-28 µM). SLC22A7 (OAT2) was less sensitive to dantrolene and 5-OH dantrolene with IC50 values of 15.6 ± 2.1 and 15.8 ± 3.2 µM, respectively. SLCO1B1 (OATP1B1), SLCO1B3 (OATP1B3), and SLCO2B1 (OATP2B1) mainly interacted with 5-OH dantrolene albeit with higher IC50 values than those observed for OAT2 and OAT3. Dantrolene and 5-OH dantrolene failed to inhibit uptake of 1-methyl-4-phenylpyrimidinium (MPP) by OCT1 and of carnitine by OCTN2. In counter-flow experiments on OAT3, dantrolene and 5-OH dantrolene decreased pre-equilibrated cellular [3H]estrone-3-sulfate (ES) content as did the transported substrates glutarate, furosemide, and bumetanide. With OAT2, dantrolene and 5-OH dantrolene slightly decreased the pre-equilibrated [3H]cGMP content. If no other transporter markedly contributes to uptake or release of ES or cGMP, respectively, these data suggest that OAT3 and OAT2 may be involved in absorption, metabolism, and excretion of dantrolene and its metabolite 5-OH dantrolene.


Asunto(s)
Dantroleno/farmacología , Relajantes Musculares Centrales/farmacología , Transportadores de Anión Orgánico Sodio-Independiente/metabolismo , Transporte Biológico , Células HEK293 , Humanos , Unión Proteica
6.
Am J Physiol Renal Physiol ; 311(1): F227-38, 2016 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-27053689

RESUMEN

The initial step in renal secretion of organic anions (OAs) is mediated by transporters in the basolateral membrane (BLM). Contributors to this process are primary active Na(+)-K(+)-ATPase (EC 3.6.3.9), secondary active Na(+)-dicarboxylate cotransporter 3 (NaDC3/SLC13A3), and tertiary active OA transporters (OATs) OAT1/SLC22A6, OAT2/SLC22A7, and OAT3/SLC22A8. In human kidneys, we analyzed the localization of these transporters by immunochemical methods in tissue cryosections and isolated membranes. The specificity of antibodies was validated with human embryonic kidney-293 cells stably transfected with functional OATs. Na(+)-K(+)-ATPase was immunolocalized to the BLM along the entire human nephron. NaDC3-related immunostaining was detected in the BLM of proximal tubules and in the BLM and/or luminal membrane of principal cells in connecting segments and collecting ducts. The thin and thick ascending limbs, macula densa, and distal tubules exhibited no reactivity with the anti-NaDC3 antibody. OAT1-OAT3-related immunostaining in human kidneys was detected only in the BLM of cortical proximal tubules; all three OATs were stained more intensely in S1/S2 segments compared with S3 segment in medullary rays, whereas the S3 segment in the outer stripe remained unstained. Expression of NaDC3, OAT1, OAT2, and OAT3 proteins exhibited considerable interindividual variability in both male and female kidneys, and sex differences in their expression could not be detected. Our experiments provide a side-by-side comparison of basolateral transporters cooperating in renal OA secretion in the human kidney.


Asunto(s)
Transportadores de Ácidos Dicarboxílicos/metabolismo , Nefronas/metabolismo , Transportadores de Anión Orgánico Sodio-Dependiente/metabolismo , Transportadores de Anión Orgánico/metabolismo , Simportadores/metabolismo , Adulto , Femenino , Células HEK293 , Humanos , Médula Renal/metabolismo , Túbulos Renales Colectores/metabolismo , Túbulos Renales Distales/metabolismo , Masculino , Membranas/metabolismo , Persona de Mediana Edad , Proteína 1 de Transporte de Anión Orgánico/metabolismo , Transportadores de Anión Orgánico Sodio-Independiente/metabolismo , Caracteres Sexuales , ATPasa Intercambiadora de Sodio-Potasio/metabolismo
7.
Am J Physiol Renal Physiol ; 309(10): F843-51, 2015 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-26377792

RESUMEN

Phylogentically, organic anion transporter (OAT)1 and OAT3 are closely related, whereas OAT2 is more distant. Experiments with human embryonic kidney-293 cells stably transfected with human OAT1, OAT2, or OAT3 were performed to compare selected transport properties. Common to OAT1, OAT2, and OAT3 is their ability to transport cGMP. OAT2 interacted with prostaglandins, and cGMP uptake was inhibited by PGE2 and PGF2α with IC50 values of 40.8 and 12.7 µM, respectively. OAT1 (IC50: 23.7 µM), OAT2 (IC50: 9.5 µM), and OAT3 (IC50: 1.6 µM) were potently inhibited by MK571, an established multidrug resistance protein inhibitor. OAT2-mediated cGMP uptake was not inhibited by short-chain monocarboxylates and, as opposed to OAT1 and OAT3, not by dicarboxylates. Consequently, OAT2 showed no cGMP/glutarate exchange. OAT1 and OAT3 exhibited a pH and a Cl- dependence with higher substrate uptake at acidic pH and lower substrate uptake in the absence of Cl-, respectively. Such pH and Cl- dependencies were not observed with OAT2. Depolarization of membrane potential by high K+ concentrations in the presence of the K+ ionophore valinomycin left cGMP uptake unaffected. In addition to cGMP, OAT2 transported urate and glutamate, but cGMP/glutamate exchange could not be demonstrated. These experiments suggest that OAT2-mediated cGMP uptake does not occur via exchange with monocarboxylates, dicarboxylates, and hydroxyl ions. The counter anion for electroneutral cGMP uptake remains to be identified.


Asunto(s)
Transporte Biológico/fisiología , Riñón/metabolismo , Transportadores de Anión Orgánico Sodio-Independiente/metabolismo , Ácido Úrico/metabolismo , Aniones/metabolismo , Células HEK293 , Humanos , Proteína 1 de Transporte de Anión Orgánico/metabolismo
8.
Am J Physiol Renal Physiol ; 308(4): F330-8, 2015 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-25477469

RESUMEN

Chronic lymphatic leukemia (CLL) is often associated with nephritic syndrome. Effective treatment of CLL by chlorambucil and bendamustine leads to the restoration of renal function. In this contribution, we sought to elucidate the impact of organic anion transporters (OATs) on the uptake of bendamustine and chlorambucil as a probable reason for the superior efficacy of bendamustine over chlorambucil in the treatment of CLL. We examined the effects of structural analogs of p-aminohippurate (PAH), melphalan, chlorambucil, and bendamustine, on OAT1-mediated [(3)H]PAH uptake and OAT3- and OAT4-mediated [(3)H]estrone sulfate (ES) uptake in stably transfected human embryonic kidney-293 cells. Melphalan had no significant inhibitory effect on any OAT, whereas chlorambucil reduced OAT1-, OAT3-, and OAT4-mediated uptake of PAH or ES down to 14.6%, 16.3%, and 66.0% of control, respectively. Bendamustine inhibited only OAT3-mediated ES uptake, which was reduced down to 14.3% of control cells, suggesting that it interacts exclusively with OAT3. The IC50 value for OAT3 was calculated to be 0.8 µM. Real-time PCR experiments demonstrated a high expression of OAT3 in lymphoma cell lines as well as primary CLL cells. OAT3-mediated accumulation of bendamustine was associated with reduced cell proliferation and an increased rate of apoptosis. We conclude that the high efficacy of bendamustine in treating CLL might be partly contributed to the expression of OAT3 in lymphoma cells and the high affinity of bendamustine for this transporter.


Asunto(s)
Antineoplásicos Alquilantes/farmacología , Leucemia Linfocítica Crónica de Células B/metabolismo , Linfoma de Células T/metabolismo , Compuestos de Mostaza Nitrogenada/farmacología , Transportadores de Anión Orgánico Sodio-Independiente/metabolismo , Antineoplásicos Alquilantes/metabolismo , Apoptosis/efectos de los fármacos , Clorhidrato de Bendamustina , Proliferación Celular/efectos de los fármacos , Clorambucilo/metabolismo , Clorambucilo/farmacología , Relación Dosis-Respuesta a Droga , Estrona/análogos & derivados , Estrona/metabolismo , Células HEK293 , Humanos , Células Jurkat , Leucemia Linfocítica Crónica de Células B/genética , Leucemia Linfocítica Crónica de Células B/patología , Linfoma de Células T/genética , Linfoma de Células T/patología , Melfalán/metabolismo , Melfalán/farmacología , Compuestos de Mostaza Nitrogenada/metabolismo , Proteína 1 de Transporte de Anión Orgánico/antagonistas & inhibidores , Proteína 1 de Transporte de Anión Orgánico/metabolismo , Transportadores de Anión Orgánico Sodio-Independiente/antagonistas & inhibidores , Transportadores de Anión Orgánico Sodio-Independiente/genética , Transfección , Células Tumorales Cultivadas , Ácido p-Aminohipúrico/metabolismo
9.
Mol Pharm ; 12(8): 2633-41, 2015 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-25751092

RESUMEN

Beta-2-adrenergic agonists are first line therapeutics in the treatment of asthma and chronic obstructive pulmonary disease (COPD). Upon inhalation, bronchodilation is achieved after binding to ß2-receptors, which are primarily localized on airway smooth muscle cells. Given that ß2-adrenergic agonists chemically are bases, they carry net positive charge at physiologic pH value in the lungs (i.e., pH 7.4). Here, we studied whether ß2-agonists interact with organic cation transporters (OCT) and whether this interaction exerted an influence on their passage across the respiratory epithelium to their target receptors. [14C]-TEA uptake into proximal (i.e., Calu-3) and distal (i.e., A549 and NCI-H441) lung epithelial cells was significantly reduced in the presence of salbutamol sulfate, formoterol fumarate, and salmeterol xinafoate in vitro. Expression of all five members of the OCT/N family has been confirmed in human pulmonary epithelial cells in situ and in vitro, which makes the identification of the transporter(s) responsible for the ß2-agonist interaction challenging. Thus, additional experiments were carried out in HEK-293 cells transfected with hOCT1-3. The most pronounced inhibition of organic cation uptake by ß2-agonists was observed in hOCT1 overexpressing HEK-293 cells. hOCT3 transfected HEK-293 cells were affected to a lesser extent, and in hOCT2 transfectants only marginal inhibition of organic cation uptake by ß2-agonists was observed. Bidirectional transport studies across confluent NCI-H441 cell monolayers revealed a net absorptive transport of [3H]-salbutamol, which was sensitive to inhibition by the OCT1 modulator, verapamil. Accordingly, salbutamol uptake into hOCT1 overexpressing HEK-293 cells was time- and concentration-dependent and could be completely blocked by decynium-22. Taken together, our data suggest that ß2-agonists are specific substrates and inhibitors of OCT1 in human respiratory epithelial cells and that this transporter might play a role in the pulmonary disposition of drugs of this class.


Asunto(s)
Agonistas de Receptores Adrenérgicos beta 2/metabolismo , Agonistas de Receptores Adrenérgicos beta 2/farmacología , Transportador 1 de Catión Orgánico/antagonistas & inhibidores , Transportador 1 de Catión Orgánico/metabolismo , Agonistas de Receptores Adrenérgicos beta 2/farmacocinética , Albuterol/metabolismo , Albuterol/farmacocinética , Albuterol/farmacología , Transporte Biológico , Células Cultivadas , Células Epiteliales/efectos de los fármacos , Células Epiteliales/metabolismo , Fumarato de Formoterol/metabolismo , Fumarato de Formoterol/farmacocinética , Fumarato de Formoterol/farmacología , Células HEK293 , Humanos , Transportador 1 de Catión Orgánico/genética , Mucosa Respiratoria/efectos de los fármacos , Mucosa Respiratoria/metabolismo , Absorción a través del Sistema Respiratorio , Xinafoato de Salmeterol/metabolismo , Xinafoato de Salmeterol/farmacocinética , Xinafoato de Salmeterol/farmacología , Transfección
10.
Pharmacol Res ; 91: 78-87, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25481222

RESUMEN

The ability of an antineoplastic drug to exert its cytostatic effect depends largely on the balance between its uptake into and extrusion from the cancer cells. ATP driven efflux transporter proteins drive the export of antineoplastic drugs and play a pivotal role in the development of chemoresistance. As regards uptake transporters, comparably less is known on their impact in drug action. In the current study, we characterized the interactions of two uptake transporter proteins, expressed mainly in the liver; the organic anion transporter 2 (OAT2, encoded by the SLC22A7 gene) and the sodium taurocholate cotransporting polypeptide (NTCP, encoded by the SLC10A1 gene), stably transfected in human embryonic kidney cells, with some antineoplastic agents that are routinely being used in cancer chemotherapy. Whereas NTCP did not show any strong interactions with the cytostatics tested, we observed a very strong inhibition of OAT2 mediated [(3)H] cGMP uptake in the presence of bendamustine, irinotecan and paclitaxel. The Ki values of OAT2 for bendamustine, irinotecan and paclitaxel were determined to be 43.3±4.33µM, 26.4±2.34µM and 10.4±0.45µM, respectively. Incubation of bendamustine with OAT2 expressing cells increased the caspase-3 activity, and this increase was inhibited by simultaneous incubation with bendamustine and probenecid, a well-known inhibitor of OATs, suggesting that bendamustine is a substrate of OAT2. A higher accumulation of irinotecan was observed in OAT2 expressing cells compared to control pcDNA cells by HPLC analysis of cell lysates. The accumulation was diminished in the presence of cGMP, the substrate we used to functionally characterize OAT2, suggesting specificity of this uptake and the fact that OAT2 mediates uptake of irinotecan.


Asunto(s)
Antineoplásicos/farmacología , Transportadores de Anión Orgánico Sodio-Dependiente/metabolismo , Transportadores de Anión Orgánico Sodio-Independiente/metabolismo , Simportadores/metabolismo , Apoptosis/efectos de los fármacos , Clorhidrato de Bendamustina , Transporte Biológico , Camptotecina/análogos & derivados , Camptotecina/farmacología , GMP Cíclico/metabolismo , Estrona/análogos & derivados , Estrona/metabolismo , Células HEK293 , Humanos , Irinotecán , Compuestos de Mostaza Nitrogenada/farmacología , Paclitaxel/farmacología
11.
Am J Physiol Renal Physiol ; 307(12): F1373-9, 2014 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-25354943

RESUMEN

Inborn defects in N-acetylglutamate (NAG) synthase (NAGS) cause a reduction of NAG, an essential cofactor for the initiation of the urea cycle. As a consequence, blood ammonium concentrations are elevated, leading to severe neurological disorders. The orphan drug N-carbamoylglutamate (NCG; Carbaglu), efficiently overcomes NAGS deficiency. However, not much is known about the transporters involved in the uptake, distribution, and elimination of the divalent organic anion NCG. Organic anion-transporting polypeptides (OATPs) as well as organic anion transporters (OATs) working in cooperation with sodium dicarboxylate cotransporter 3 (NaDC3) accept a wide variety of structurally unrelated drugs. To test for possible interactions with OATPs and OATs, the impact of NCG on these transporters in stably transfected human embryonic kidney-293 cells was measured. The two-electrode voltage-clamp technique was used to monitor NCG-mediated currents in Xenopus laevis oocytes that expressed NaDC3. Neither OATPs nor OAT2 and OAT3 interacted with NCG, but OAT1 transported NCG. In addition, NCG was identified as a high-affinity substrate of NaDC3. Preincubation of OAT4-transfected human embryonic kidney-293 cells with NCG showed an increased uptake of estrone sulfate, the reference substrate of OAT4, indicating efflux of NCG by OAT4. In summary, NaDC3 and, to a lesser extent, OAT1 are likely to be responsible for the uptake of NCG from the blood. Efflux of NCG across the luminal membrane into the tubular lumen probably occurs by OAT4 completing renal secretion of this drug.


Asunto(s)
Transportadores de Ácidos Dicarboxílicos/metabolismo , Glutamatos/metabolismo , Túbulos Renales Proximales/metabolismo , Proteína 1 de Transporte de Anión Orgánico/metabolismo , Transportadores de Anión Orgánico Sodio-Dependiente/metabolismo , Eliminación Renal , Simportadores/metabolismo , Trastornos Innatos del Ciclo de la Urea/tratamiento farmacológico , N-Acetiltransferasa de Aminoácidos , Animales , Transportadores de Ácidos Dicarboxílicos/genética , Células HEK293 , Humanos , Potenciales de la Membrana , Proteína 1 de Transporte de Anión Orgánico/genética , Transportadores de Anión Orgánico Sodio-Dependiente/genética , Simportadores/genética , Transfección , Trastornos Innatos del Ciclo de la Urea/enzimología , Xenopus laevis
12.
J Hered ; 105(1): 82-90, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24285829

RESUMEN

Eritrea has one of the northernmost populations of African elephants. Only about 100 elephants persist in the Gash-Barka administrative zone. Elephants in Eritrea have become completely isolated, with no gene flow from other elephant populations. The conservation of Eritrean elephants would benefit from an understanding of their genetic affinities to elephants elsewhere on the continent and the degree to which genetic variation persists in the population. Using dung samples from Eritrean elephants, we examined 18 species-diagnostic single nucleotide polymorphisms in 3 nuclear genes, sequences of mitochondrial HVR1 and ND5, and genotyped 11 microsatellite loci. The sampled Eritrean elephants carried nuclear and mitochondrial DNA markers establishing them as savanna elephants, with closer genetic affinity to Eastern than to North Central savanna elephant populations, and contrary to speculation by some scholars that forest elephants were found in Eritrea. Mitochondrial DNA diversity was relatively low, with 2 haplotypes unique to Eritrea predominating. Microsatellite genotypes could only be determined for a small number of elephants but suggested that the population suffers from low genetic diversity. Conservation efforts should aim to protect Eritrean elephants and their habitat in the short run, with restoration of habitat connectivity and genetic diversity as long-term goals.


Asunto(s)
ADN Mitocondrial/aislamiento & purificación , Elefantes/genética , Variación Genética , Animales , Conservación de los Recursos Naturales , ADN Mitocondrial/genética , Ecosistema , Eritrea , Sitios Genéticos , Marcadores Genéticos , Genotipo , Haplotipos , Repeticiones de Microsatélite , Filogeografía , Polimorfismo de Nucleótido Simple , Análisis de Secuencia de ADN , Árboles
13.
Am J Physiol Renal Physiol ; 304(4): F403-9, 2013 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-23255614

RESUMEN

Due to their clearance function, the kidneys are exposed to high concentrations of oxidants and potentially toxic substances. To maintain cellular integrity, renal cells have to be protected by sufficient concentrations of the antioxidant glutathione (GSH). We tested whether GSH or its precursors are taken up by human organic anion transporters 1 (OAT1) and 3 (OAT3) stably expressed in HEK293 cells. GSH did not inhibit uptake of p-aminohippurate (PAH) or of estrone sulfate (ES) in OAT3-transfected HEK293 cells. In OAT1-transfected cells, GSH reduced the uptake of PAH marginally. Among the GSH constituent amino acids, glutamate, cysteine, and glycine, only glutamate inhibited OAT1, but labeled glutamate was not taken up by a probenecid-inhibitable transport system. Thus OAT1 binds glutamate but is unable to translocate it. The GSH precursor dipeptide, cysteinyl glycine (cysgly), and the glutamate derivative N-acetyl glutamate (NAG), inhibited uptake of PAH when present in the medium and trans-stimulated uptake of PAH from the intracellular side, indicating that they are hitherto unrecognized transported substrates of OAT1. N-acetyl aspartate weakly interacted with OAT1, but aspartate did not. NAG inhibited also OAT3, albeit with much lower affinity compared with OAT1, and glutamate did not interact with OAT3 at all. Taken together, human OAT3 and OAT1 cannot be involved in renal GSH extraction from the blood. However, OAT1 could support intracellular GSH synthesis by taking up cysteinyl glycine.


Asunto(s)
Glutamatos/metabolismo , Glutatión/metabolismo , Proteína 1 de Transporte de Anión Orgánico/metabolismo , Ácidos Aminohipúricos/metabolismo , Ácido Aspártico/análogos & derivados , Ácido Aspártico/metabolismo , Transporte Biológico , Cisteína/metabolismo , Dipéptidos/metabolismo , Estrona/análogos & derivados , Estrona/metabolismo , Glicina/metabolismo , Células HEK293 , Humanos , Riñón/efectos de los fármacos , Riñón/metabolismo , Proteína 1 de Transporte de Anión Orgánico/genética , Transportadores de Anión Orgánico Sodio-Independiente/genética , Transportadores de Anión Orgánico Sodio-Independiente/metabolismo , Probenecid/farmacología , Transfección , Uricosúricos/farmacología
14.
Am J Pathol ; 181(5): 1595-606, 2012 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-22944601

RESUMEN

The role of proximal versus distal tubular injury in the pathogenesis of acute kidney injury (AKI) is debatable. Inhibition of prolyl hydroxylases that regulate the degradation of hypoxia-inducible transcription factors (HIFs) is a promising therapeutic approach to optimize energy preservation under hypoxia and has successfully been applied to protect kidney structure and function in AKI models. Presently used prolyl hydroxylase inhibitors are lipophilic 2-oxoglutarate analogues (2OGAs) that are widely taken up in cells of most organs. Given the selective expression of organic anion transporters (OATs) in renal proximal tubular cells, we hypothesized that hydrophilic 2OGAs can specifically target proximal tubular cells. We found that cellular hydrophilic 2OGAs uptake depended on OATs and largely confined to the kidney, where it resulted in activation of HIF target genes only in proximal tubular cells. When applied in ischemia-reperfusion experiments, systemically active 2OGA preserved kidney structure and function, but OAT1-transported 2OGA was not protective, suggesting that HIF stabilization in distal tubular rather than proximal tubular cells and/or nontubular cells mediates protective effects. This study provides proof of concept for selective drug targeting of proximal tubular cells on the basis of specific transporters, gives insights into the role of different nephron segments in AKI pathophysiology, and may offer options for long-term HIF stabilization in proximal tubules without confounding effects of erythropoietin induction in peritubular cells and unwarranted extrarenal effects.


Asunto(s)
Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Ácidos Cetoglutáricos/química , Ácidos Cetoglutáricos/farmacología , Túbulos Renales Proximales/metabolismo , Túbulos Renales Proximales/patología , Ácido Acético/química , Ácido Acético/farmacología , Lesión Renal Aguda/complicaciones , Lesión Renal Aguda/patología , Lesión Renal Aguda/fisiopatología , Aminoácidos Dicarboxílicos/farmacología , Animales , Transporte Biológico/efectos de los fármacos , Línea Celular , Separación Celular , Regulación de la Expresión Génica/efectos de los fármacos , Humanos , Isquemia/complicaciones , Isquemia/patología , Isquemia/fisiopatología , Precondicionamiento Isquémico , Pruebas de Función Renal , Túbulos Renales Proximales/efectos de los fármacos , Ratones , Proteína 1 de Transporte de Anión Orgánico/metabolismo , Estabilidad Proteica/efectos de los fármacos , Piridinas/química , Piridinas/farmacología
15.
Eur J Pharm Sci ; 186: 106459, 2023 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-37142000

RESUMEN

PURPOSE: Cocktails of transporter probe drugs are used in vivo to assess transporter activity and respective drug-drug interactions. An inhibitory effect of components on transporter activities should be ruled out. Here, for a clinically tested cocktail consisting of adefovir, digoxin, metformin, sitagliptin, and pitavastatin, inhibition of major transporters by individual probe substrates was investigated in vitro. METHODS: Transporter transfected HEK293 cells were used in all evaluations. Cell-based assays were applied for uptake by human organic cation transporters 1/2 (hOCT1/2), organic anion transporters 1/3 (hOAT1/3), multidrug and toxin extrusion proteins 1/2K (hMATE1/2K), and organic anion transporter polypeptide 1B1/3 (hOATP1B1/3). For P-glycoprotein (hMDR1) a cell-based efflux assay was used whereas an inside-out vesicle-based assay was used for the bile salt export pump (hBSEP). All assays used standard substrates and established inhibitors (as positive controls). Inhibition experiments using clinically achievable concentrations of potential perpetrators at the relevant transporter expression site were carried out initially. If there was a significant effect, the inhibition potency (Ki) was studied in detail. RESULTS: In the inhibition tests, only sitagliptin had an effect and reduced hOCT1- and hOCT2- mediated metformin uptake and hMATE2K mediated MPP+ uptake by more than 70%, 80%, and 30%, respectively. The ratios of unbound Cmax (observed clinically) to Ki of sitagliptin were low with 0.009, 0.03, and 0.001 for hOCT1, hOCT2, and hMATE2K, respectively. CONCLUSION: The inhibition of hOCT2 in vitro by sitagliptin is in agreement with the borderline inhibition of renal metformin elimination observed clinically, supporting a dose reduction of sitagliptin in the cocktail.


Asunto(s)
Metformina , Proteínas de Transporte de Catión Orgánico , Humanos , Proteínas de Transporte de Catión Orgánico/genética , Proteínas de Transporte de Catión Orgánico/metabolismo , Células HEK293 , Transporte Biológico , Fosfato de Sitagliptina/farmacología , Metformina/metabolismo , Transportador 2 de Cátion Orgánico/metabolismo , Interacciones Farmacológicas
16.
Pflugers Arch ; 464(4): 367-74, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-22875277

RESUMEN

2-Oxoglutarate or α-ketoglutarate (αKG) is a substrate of HIF prolyl hydroxylases 1-3 that decrease cellular levels of the hypoxia-inducible factor 1α (HIF-1α) in the presence of oxygen. αKG analogs are applied to stabilize HIF-1α even in the presence of oxygen and thus provide a novel therapeutic option in treating kidney diseases. In the kidneys, the organic anion transporters 1 and 3 (OAT1 and OAT3, respectively) in cooperation with the sodium-dependent dicarboxylate transporter 3 (NaDC3) and the OAT4 might be responsible for the uptake of αKG analogs into and the efflux out of the tubular cells. Using the radiolabelled substrates p-aminohippurate (PAH, OAT1), estrone-3-sulfate (ES; OAT3, OAT4), and succinate (NaDC3), N-oxalylglycine (NOG), dimethyloxalyl glycine (DMOG), 2,4-diethylpyridine dicarboxylate (2,4-DPD), and pyridine-2,4-dicarboxylic acid (PDCA) were tested in cis-inhibition and trans-stimulation experiments. None of these αKG analogs interacted with NaDC3. 2,4-DPD and PDCA inhibited ES uptake by OAT3 moderately. NOG, 2,4-DPD and PDCA, but not DMOG, inhibited PAH uptake by OAT1 significantly. trans-Stimulation experiments and experiments demonstrating stabilization of HIF-1α revealed that NOG and PDCA, but not 2,4-DPD, are translocated by OAT1. All compounds trans-stimulated ES uptake by OAT4, but only PDCA stabilized HIF-1α. The data suggest that OAT1 is involved in the uptake of NOG and PDCA across the basolateral membrane of proximal tubule cells, whereas OAT4 may release these compounds into the primary urine.


Asunto(s)
Dioxigenasas/antagonistas & inhibidores , Ácidos Cetoglutáricos/metabolismo , Proteína 1 de Transporte de Anión Orgánico/metabolismo , Transportadores de Anión Orgánico/metabolismo , Procolágeno-Prolina Dioxigenasa/antagonistas & inhibidores , Aminoácidos Dicarboxílicos/metabolismo , Transporte Biológico Activo , Estrona/análogos & derivados , Estrona/metabolismo , Células HEK293 , Humanos , Factor 1 Inducible por Hipoxia/metabolismo , Transportadores de Anión Orgánico/efectos de los fármacos , Transportadores de Anión Orgánico Sodio-Dependiente/efectos de los fármacos , Transportadores de Anión Orgánico Sodio-Dependiente/metabolismo , Piridinas/metabolismo , Ácido Succínico/metabolismo , Simportadores/efectos de los fármacos , Simportadores/metabolismo , Ácido p-Aminohipúrico/metabolismo
17.
J Pharmacol Exp Ther ; 341(1): 16-23, 2012 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-22202118

RESUMEN

Antineoplastic agents directed at nuclear and cytoplasmic targets in tumor cells represent the current mainstay of treatment for patients with disseminated malignant diseases. Cellular uptake of antineoplastics is a prerequisite for their efficacy. Five of six lymphoma cell lines as well as primary samples from chronic lymphocytic leukemia patients demonstrated significant expression of SLC22A1 mRNA coding for organic cation transporter 1 (OCT1). Functionally, the antineoplastic agents irinotecan, mitoxantrone, and paclitaxel inhibited the uptake of the organic cation [(3)H]1-methyl-4-pyridinium iodide into OCT1-transfected Chinese hamster ovary model cells, with K(i) values of 1.7, 85, and 50 µM, respectively. Correspondingly, OCT1-positive cell lines and transfectants exhibited significantly higher susceptibilities to the cytotoxic effects of irinotecan and paclitaxel compared with those of OCT1-negative controls. We hypothesize that OCT1 can contribute to the susceptibility of cancer cells to selected antineoplastic drugs. In the future, an expression analysis of the transporters and the application of transporter-specific antineoplastic agents could help to tailor cancer therapy.


Asunto(s)
Camptotecina/análogos & derivados , Regulación Neoplásica de la Expresión Génica , Linfoma/metabolismo , Transportador 1 de Catión Orgánico/biosíntesis , Paclitaxel/metabolismo , Animales , Células CHO , Camptotecina/metabolismo , Camptotecina/farmacología , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/fisiología , Cricetinae , Cricetulus , Humanos , Irinotecán , Paclitaxel/farmacología
18.
Eur J Pharm Sci ; 175: 106217, 2022 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-35644507

RESUMEN

The organic anion transporter 1 (OAT1) is mainly expressed in proximal tubule cells, where it mediates the renal uptake of endogenous and exogenous compounds. Thereby, it has enormous clinical relevance particularly in drug-drug interactions. The aim of the present in vitro study was to elucidate potential species dependent disparity of human and mouse OAT1 in handling of structural diverse drugs and pesticides. A basic functional comparison of the two transporters showed a similar time-dependent uptake of the substrate para-aminohippuric acid (PAH), the affinity (Km) was 94 µM for hOAT1 and 32 µM for mOat1. Inhibition experiments for hOAT1 and mOat1 provided IC50 values for glibenclamide of 5.1 and 6.4 µM and for probenecid of 31 and 11 µM. Than the interaction of hOAT1 and mOat1 with 23 drugs and 13 pesticides was examined. Three pesticides and thirteen drugs showed high inhibitory potency of 50% or more to both transporters. Furthermore, we identified rosiglitazone as a differential active inhibitor, with stronger inhibitory properties (IC50) to mOat1 (7.7 µM) than to hOAT1 (31 µM), and olmesartan with the most pronounced difference: The IC50 of hOAT1 (0.40 µM) was 48-fold lower than of mOat1 (19 µM). In conclusion, we found a strong correlation for the inhibitory effects of most drugs and pesticides on human and mouse OAT1. But the example of olmesartan shows that species differences have to be considered when extrapolating data from mouse to human.


Asunto(s)
Proteína 1 de Transporte de Anión Orgánico , Plaguicidas , Animales , Transporte Biológico , Humanos , Riñón/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Ratones , Proteína 1 de Transporte de Anión Orgánico/metabolismo , Transportadores de Anión Orgánico Sodio-Independiente/metabolismo , Plaguicidas/metabolismo
20.
Am J Physiol Renal Physiol ; 301(5): F1026-34, 2011 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-21865262

RESUMEN

Organic anions are taken up from the blood into proximal tubule cells by organic anion transporters 1 and 3 (OAT1 and OAT3) in exchange for dicarboxylates. The released dicarboxylates are recycled by the sodium dicarboxylate cotransporter 3 (NaDC3). In this study, we tested the substrate specificities of human NaDC3, OAT1, and OAT3 to identify those dicarboxylates for which the three cooperating transporters have common high affinities. All transporters were stably expressed in HEK293 cells, and extracellularly added dicarboxylates were used as inhibitors of [(14)C]succinate (NaDC3), p-[(3)H]aminohippurate (OAT1), or [(3)H]estrone-3-sulfate (OAT3) uptake. Human NaDC3 was stably expressed as proven by immunochemical methods and by sodium-dependent uptake of succinate (K(0.5) for sodium activation, 44.6 mM; Hill coefficient, 2.1; K(m) for succinate, 18 µM). NaDC3 was best inhibited by succinate (IC(50) 25.5 µM) and less by α-ketoglutarate (IC(50) 69.2 µM) and fumarate (IC(50) 95.2 µM). Dicarboxylates with longer carbon backbones (adipate, pimelate, suberate) had low or no affinity for NaDC3. OAT1 exhibited the highest affinity for glutarate, α-ketoglutarate, and adipate (IC(50) between 3.3 and 6.2 µM), followed by pimelate (18.6 µM) and suberate (19.3 µM). The affinity of OAT1 to succinate and fumarate was low. OAT3 showed the same dicarboxylate selectivity with ∼13-fold higher IC(50) values compared with OAT1. The data 1) reveal α-ketoglutarate as a common high-affinity substrate of NaDC3, OAT1, and OAT3 and 2) suggest potentially similar molecular structures of the binding sites in OAT1 and OAT3 for dicarboxylates.


Asunto(s)
Transportadores de Ácidos Dicarboxílicos/metabolismo , Ácidos Dicarboxílicos/metabolismo , Proteína 1 de Transporte de Anión Orgánico/metabolismo , Transportadores de Anión Orgánico Sodio-Dependiente/metabolismo , Transportadores de Anión Orgánico Sodio-Independiente/metabolismo , Simportadores/metabolismo , Secuencia de Aminoácidos , Sitios de Unión , Western Blotting , Transportadores de Ácidos Dicarboxílicos/genética , Ácidos Dicarboxílicos/química , Electroforesis en Gel de Poliacrilamida , Estrona/farmacología , Células HEK293 , Humanos , Inmunohistoquímica , Ácidos Cetoglutáricos/metabolismo , Datos de Secuencia Molecular , Proteína 1 de Transporte de Anión Orgánico/genética , Transportadores de Anión Orgánico Sodio-Dependiente/genética , Transportadores de Anión Orgánico Sodio-Independiente/genética , Relación Estructura-Actividad , Succinatos/metabolismo , Simportadores/genética , Transfección , Ácido p-Aminohipúrico/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA