Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
1.
Sensors (Basel) ; 24(12)2024 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-38931714

RESUMEN

Augmented reality (AR) technology has been widely applied across a variety of fields, with head-up displays (HUDs) being one of its prominent uses, offering immersive three-dimensional (3D) experiences and interaction with digital content and the real world. AR-HUDs face challenges such as limited field of view (FOV), small eye-box, bulky form factor, and absence of accommodation cue, often compromising trade-offs between these factors. Recently, optical waveguide based on pupil replication process has attracted increasing attention as an optical element for its compact form factor and exit-pupil expansion. Despite these advantages, current waveguide displays struggle to integrate visual information with real scenes because they do not produce accommodation-capable virtual content. In this paper, we introduce a lensless accommodation-capable holographic system based on a waveguide. Our system aims to expand the eye-box at the optimal viewing distance that provides the maximum FOV. We devised a formalized CGH algorithm based on bold assumption and two constraints and successfully performed numerical observation simulation. In optical experiments, accommodation-capable images with a maximum horizontal FOV of 7.0 degrees were successfully observed within an expanded eye-box of 9.18 mm at an optimal observation distance of 112 mm.

2.
Opt Express ; 31(5): 7466-7479, 2023 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-36859876

RESUMEN

A horopter screen has been popularly studied since its curvature reduces the parallax between two eyes and the immersive displays with a horopter-curved screen are regarded to provide vivid impression of depth and stereopsis. But, the projection on a horopter screen causes some practical problems that the image is hard to be focused on the entire screen and its magnification is partially different. An aberration-free warp projection has a great potential to solve these problems, which changes the optical path from an object plane to an image plane. Since the variation of the curvature is severe in the horopter screen, a freeform optical element is required for an aberration-free warp projection. In comparison with the traditional fabrication method, the hologram printer has the advantage of rapidly manufacturing free-form optical devices by recording the desired wavefront phase on the holographic medium. In this paper, for a given arbitrary horopter screen, the aberration-free warp projection is implemented with the freeform holographic optical elements (HOEs) fabricated by our tailor-made hologram printer. We experimentally demonstrate that the distortion and defocus aberration are effectively corrected.

3.
Sensors (Basel) ; 23(22)2023 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-38005665

RESUMEN

Digital holographic microscopy (DHM) is a valuable technique for investigating the optical properties of samples through the measurement of intensity and phase of diffracted beams. However, DHMs are constrained by Lagrange invariance, compromising the spatial bandwidth product (SBP) which relates resolution and field of view. Synthetic aperture DHM (SA-DHM) was introduced to overcome this limitation, but it faces significant challenges such as aberrations in synthesizing the optical information corresponding to the steering angle of incident wave. This paper proposes a novel approach utilizing deep neural networks (DNNs) for compensating aberrations in SA-DHM, extending the compensation scope beyond the numerical aperture (NA) of the objective lens. The method involves training a DNN from diffraction patterns and Zernike coefficients through a circular aperture, enabling effective aberration compensation in the illumination beam. This method makes it possible to estimate aberration coefficients from the only part of the diffracted beam cutoff by the circular aperture mask. With the proposed technique, the simulation results present improved resolution and quality of sample images. The integration of deep neural networks with SA-DHM holds promise for advancing microscopy capabilities and overcoming existing limitations.

4.
Opt Express ; 30(26): 47375-47387, 2022 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-36558667

RESUMEN

Volumetric display technique has a great advantage of displaying realistic three-dimensional contents with a 360-degree viewing angle. However, most volumetric displays cannot provide mixed reality because their screens inside the displays obstruct the external scene. We design a 360-degree mixed-reality volumetric display using an asymmetric diffusive holographic optical element (ADHOE). The ADHOE has wavelength selectivity, and it diffuses the light with the only specific wavelength for the virtual object, so it is possible to optically combine the virtual object and the real scene. Also, the ADHOE has different vertical and horizontal diffusing angles, and it is suitable for a horizontal-parallax-only application. In our system, the parallax images are generated by the DMD, and they are projected sequentially on the ADHOE. The ADHOE is shaped as a slanted curved surface with respect to the optical axis, and some annoying color dispersion is observed due to the mismatch between the diffraction peak points of two different wavelengths. In order to solve this problem, the carrier frequency is applied to green elemental images and the proper Fourier filter cuts off the unwanted diffraction peak points. The Fourier transform with 2f optics is built to record the ADHOE where the angular spectral bandwidth is determined by adjusting the width of the incident object light. A 360-degree see-through display with ADHOE is implemented and the feasibility of mixed reality is verified successfully.

5.
Opt Lett ; 47(2): 257-260, 2022 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-35030581

RESUMEN

We propose a holographic printing technique for generating highly efficient large-deflection-angle freeform holographic optical elements (HOEs). For industrial device applications, the optical efficiency and deflection angle of HOEs are critical. To fabricate a high-frequency volume grating in a hogel, we design an optomechanical hogel recording system with a high angle deflection capability, which contrasts with the conventional printing scheme, the wavefront holographic printing technique featuring a paraxial deflection angle. With the proposed system, a large-deflection-angle HOE is experimentally demonstrated, and short-throw holographic caustic projection patterns are realized.

6.
Opt Express ; 29(17): 26793-26807, 2021 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-34615107

RESUMEN

An efficient synthesis algorithm for wide-viewing full-color depthmap computer-generated holograms is proposed. We develop a precise computational algorithm integrating wave-optic geometry-mapping, color-matching, and noise-filtering to multiplex multiview elementary computer-generated holograms (CGHs) into a single high-definition CGH without three-dimensional perspective distortion or color dispersion. Computational parallelism is exploited to achieve significant computational efficiency improvement in the production throughput of full-color wide-viewing angle CGHs. The proposed algorithm is verified through the full-color binary hologram reconstruction experiments utilizing an off-axis R·G·B simultaneous illumination method, which suggests the feasibility of the full-color sub-wavelength binary spatial light modulator technology.

7.
Sensors (Basel) ; 21(16)2021 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-34451063

RESUMEN

We propose a compressive self-interference incoherent digital holography (SIDH) with a geometric phase metalens for section-wise holographic object reconstruction. We specify the details of the SIDH with a geometric phase metalens design that covers the visible wavelength band, analyze a spatial distortion problem in the SIDH and address a process of a compressive holographic section-wise reconstruction with analytic spatial calibration. The metalens allows us to realize a compressive SIDH system in the visible wavelength band using an image sensor with relatively low bandwidth. The operation of the proposed compressive SIDH is verified through numerical simulations.

8.
J Nanosci Nanotechnol ; 19(4): 2240-2246, 2019 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-30486976

RESUMEN

There are some reports related to applications of ultraviolet (UV) and water to enhance the electrical performance of metal oxide thin-film transistors (TFTs). We recently discovered that treatment timing and treatment method are also important for a good metal oxide thin-film formation. There are different influences on the metal oxide TFTs' electrical properties based on the UV irradiation and water treatment timing. The field-effect mobility of TFTs treated with UV-irradiation and water, which was spin-coated on the UV-irradiated film after pre-annealing, increased to 4.71 cm²V-1s-1 and 6.41 cm²V-1s-1. This was higher than the 3.39 cm²V-1s-1 field-effect mobility of non-treated TFTs. On the other hands, TFTs which were fabricated by the same method, with only varying the treatment time, after post-annealing, exhibited the tendency to show a decrease in field-effect mobility to 1.93 cm²V-1s-1 and 1.32 cm²V-1s-1, gradually, showing a contrasting tendency with the former conditions.

9.
Opt Express ; 26(13): 16853-16874, 2018 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-30119505

RESUMEN

The interocular affine similarity of three-dimensional scenes is investigated and a novel accelerated reconfiguration algorithm for intermediate-view polygon computer-generated holograms based on interocular affine similarity is proposed. We demonstrate by using the numerical simulations of full-color polygon computer-generation holograms that the proposed intermediate view reconfiguration algorithm is particularly useful for the computation of wide-viewing angle polygon computer-generated holograms.

10.
Opt Express ; 25(13): 14774-14782, 2017 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-28789061

RESUMEN

We propose a full-color complex holographic display system design comprised of three R/G/B amplitude-only spatial light modulators and an achromatic Fourier filter. A key feature of the design is a single achromatic Fourier bandpass filter for robust axial R/G/B color matching, whereby the R/G/B holographic image light fields can be three-dimensionally aligned. The synthesis algorithm producing the full-color computer-generated holograms for this system is described and a full-color optical reconstruction of the designed holographic three-dimensional images is experimentally demonstrated.

11.
Opt Express ; 25(4): 3469-3480, 2017 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-28241561

RESUMEN

The complex modulation characteristics of a light field through an amplitude-phase double-layer spatial light modulator are analyzed based on the wave-optic numerical model, and the structural conditions for the optimal double-layer complex modulation structure are investigated. The relationships of interlayer distance, pixel size, and complex light modulation performance are analyzed. The main finding of this study is that the optimal interlayer distance for the double-layer structure can be found at the Talbot effect condition. For validating the practical usefulness of our findings, a high quality reconstruction of the complex computer-generated holograms and the robustness of the angular tolerance of the complex modulation at the Talbot interlayer distance are numerically demonstrated.

12.
Appl Opt ; 56(34): 9469-9476, 2017 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-29216060

RESUMEN

Three-dimensional (3D) metrology has received a lot of attention from academic and industrial communities due to its broad applications, such as 3D contents, 3D printing, and autonomous driving. The all-optical depth coloring (AODC) camera has some benefits in computation load since it extracts depth information of an object fully optically. The AODC camera represents the depth of the object as a variation of wavelength, and spectroscopy is generally required to measure the wavelength. However, in the AODC camera, the color vector in RGB color space is convertible inversely into the wavelength after projection on the normalized rgb plane because the detected spectrum through the gating part has a narrow bandwidth as a result of the width of the slit in the projection part. In this paper, we propose an inverse conversion algorithm from RGB color to depth without spectroscopy. Experimental results are presented to confirm its feasibility. Also, some practical limitations are discussed, resulting from the nonlinearity of the response of the image sensor and the widths of the slits in the projection part and the gating part.

13.
Opt Express ; 24(19): 21329-39, 2016 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-27661875

RESUMEN

In non-contacting depth extraction there are several issues, such as the accuracy and the measurement speed. In the issue of the measurement speed, the computation cost for image processing is significant. We present an all-optical depth extraction method by coloring objects according to their depth. Our system is operated fully optically and both encoding and decoding processes are optically performed. Therefore, all-optical depth coloring has a distinct advantage to extract the depth information in real time without any computation cost. We invent a directional gating method to extract the points from the object which are positioned at the same distance. Based on this method, the objects look painted by different colors according to the distance when the objects are observed through our system. In this paper, we demonstrate the all-optical depth coloring system and verify the feasibility of our method.

14.
Opt Express ; 24(22): 24999-25009, 2016 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-27828440

RESUMEN

We demonstrate a tabletop holographic display system for simultaneously serving continuous parallax 3.2-inch 360-degree three-dimensional holographic image content to multiple observers at a 45-degree oblique viewing circumference. To achieve this, localized viewing windows are to be seamlessly generated on the 360-degree viewing circumference. In the proposed system, four synchronized high-speed digital micro-mirror displays are optically configured to comprise a single 2 by 2 multi-vision panel that enables size enlargement and time-division-multiplexing of holographic image content. Also, a specially designed optical image delivery sub-system that is composed of parabolic mirrors and an aspheric lens is designed as an essential part for achieving an enlarged 3.2-inch holographic image and a large 45-degree oblique viewing angle without visual distortion.

15.
Sensors (Basel) ; 16(11)2016 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-27801812

RESUMEN

We propose a liquid crystal (LC)-based 3D optical surface profilometer that can utilize multiple fringe patterns to extract an enhanced 3D surface depth profile. To avoid the optical phase ambiguity and enhance the 3D depth extraction, 16 interference patterns were generated by the LC-based dynamic fringe pattern generator (DFPG) using four-step phase shifting and four-step spatial frequency varying schemes. The DFPG had one common slit with an electrically controllable birefringence (ECB) LC mode and four switching slits with a twisted nematic LC mode. The spatial frequency of the projected fringe pattern could be controlled by selecting one of the switching slits. In addition, moving fringe patterns were obtainable by applying voltages to the ECB LC layer, which varied the phase difference between the common and the selected switching slits. Notably, the DFPG switching time required to project 16 fringe patterns was minimized by utilizing the dual-frequency modulation of the driving waveform to switch the LC layers. We calculated the phase modulation of the DFPG and reconstructed the depth profile of 3D objects using a discrete Fourier transform method and geometric optical parameters.

16.
Opt Express ; 23(3): 2863-71, 2015 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-25836147

RESUMEN

For the real-time computation of computer-generated holograms (CGHs), various accelerated algorithms have been actively investigated. This paper proposes a novel concept of sparse computation of polygon CGH, which is inspired by an observation of the sparsity in the angular spectrum of a unit triangular polygon and present the accelerated algorithm using the intrinsic sparsity in the polygon CGH pattern for the enhancement of computational efficiency effectively. It is shown with numerical results that computation efficiency can be greatly improved without degrading the quality of holographic image.

17.
Opt Express ; 22(6): 6526-34, 2014 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-24664001

RESUMEN

A compact head-mounted holographic three-dimensional display with an RGB light-emitting diode (LED) light source is developed. Issues regarding full-color holographic image design and the quality associated with the use of an LED light source are investigated. The accommodation effect and background noise in the proposed system are discussed based on experimental observation.

18.
Opt Express ; 22(25): 31180-91, 2014 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-25607067

RESUMEN

A texturing method for the semi-analytic polygon computer-generated hologram synthesis algorithm is studied. Through this, the full-potential and development direction of the semi-analytic polygon computer-generated holograms are discussed and compared to that of the conventional numerical algorithm of polygon computer-generated hologram generation based on the fast Fourier transform and bilinear interpolation. The theoretical hurdle of the semi-analytic texturing algorithm is manifested and an approach to resolve this problen. A key mathematical approximation in the angular spectrum computer-generated hologram computation, as well as the trade-offs between texturing effects and computational efficiencies are analyzed through numerical simulation. In this fundamental study, theoretical potential of the semi-analytic polygon computer-generated hologram algorithm is revealed and the ultimate goal of research into the algorithm clarified.

19.
Opt Express ; 22(18): 21460-70, 2014 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-25321524

RESUMEN

The modulation efficiency of the double-phase hologram macro-pixel that is designed for complex modulation of light waves is defined and analyzed. The scale-down of the double-phase hologram macro-pixel associated with the construction of complex spatial light modulators is discussed.

20.
Opt Lett ; 39(12): 3642-5, 2014 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-24978557

RESUMEN

The dark-line defect problem in the conventional polygon computer-generated hologram (CGH) is addressed. To resolve this problem, we clarify the physical origin of the defect and address the concept of phase-regularization. A novel synthesis algorithm for a phase-regularized polygon CGH for generating photorealistic defect-free holographic images is proposed. The optical reconstruction results of the phase-regularized polygon CGHs without the dark-line defects are presented.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA