Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
RNA ; 27(10): 1265-1280, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34266995

RESUMEN

XRN1 is a highly conserved exoribonuclease which degrades uncapped RNAs in a 5'-3' direction. Degradation of RNAs by XRN1 is important in many cellular and developmental processes and is relevant to human disease. Studies in D. melanogaster demonstrate that XRN1 can target specific RNAs, which have important consequences for developmental pathways. Osteosarcoma is a malignancy of the bone and accounts for 2% of all pediatric cancers worldwide. Five-year survival of patients has remained static since the 1970s and therefore furthering our molecular understanding of this disease is crucial. Previous work has shown a down-regulation of XRN1 in osteosarcoma cells; however, the transcripts regulated by XRN1 which might promote osteosarcoma remain elusive. Here, we confirm reduced levels of XRN1 in osteosarcoma cell lines and patient samples and identify XRN1-sensitive transcripts in human osteosarcoma cells. Using RNA-seq in XRN1-knockdown SAOS-2 cells, we show that 1178 genes are differentially regulated. Using a novel bioinformatic approach, we demonstrate that 134 transcripts show characteristics of direct post-transcriptional regulation by XRN1. Long noncoding RNAs (lncRNAs) are enriched in this group, suggesting that XRN1 normally plays an important role in controlling lncRNA expression in these cells. Among potential lncRNAs targeted by XRN1 is HOTAIR, which is known to be up-regulated in osteosarcoma and contributes to disease progression. We have also identified G-rich and GU motifs in post-transcriptionally regulated transcripts which appear to sensitize them to XRN1 degradation. Our results therefore provide significant insights into the specificity of XRN1 in human cells which are relevant to disease.


Asunto(s)
Neoplasias Óseas/genética , Exorribonucleasas/genética , Proteínas Asociadas a Microtúbulos/genética , Osteosarcoma/genética , ARN Largo no Codificante/genética , ARN Mensajero/genética , ARN Neoplásico/genética , Neoplasias Óseas/metabolismo , Neoplasias Óseas/patología , Línea Celular Tumoral , Niño , Biología Computacional , Exorribonucleasas/deficiencia , Regulación Neoplásica de la Expresión Génica , Técnicas de Silenciamiento del Gen , Estudio de Asociación del Genoma Completo , Humanos , Proteínas Asociadas a Microtúbulos/deficiencia , Anotación de Secuencia Molecular , Motivos de Nucleótidos , Osteosarcoma/metabolismo , Osteosarcoma/patología , Procesamiento Postranscripcional del ARN , Estabilidad del ARN , ARN Largo no Codificante/metabolismo , ARN Mensajero/metabolismo , ARN Neoplásico/metabolismo
2.
PLoS Genet ; 16(12): e1009297, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33370287

RESUMEN

Dis3L2 is a highly conserved 3'-5' exoribonuclease which is mutated in the human overgrowth disorders Perlman syndrome and Wilms' tumour of the kidney. Using Drosophila melanogaster as a model system, we have generated a new dis3L2 null mutant together with wild-type and nuclease-dead genetic lines in Drosophila to demonstrate that the catalytic activity of Dis3L2 is required to control cell proliferation. To understand the cellular pathways regulated by Dis3L2 to control proliferation, we used RNA-seq on dis3L2 mutant wing discs to show that the imaginal disc growth factor Idgf2 is responsible for driving the wing overgrowth. IDGFs are conserved proteins homologous to human chitinase-like proteins such as CHI3L1/YKL-40 which are implicated in tissue regeneration as well as cancers including colon cancer and non-small cell lung cancer. We also demonstrate that loss of DIS3L2 in human kidney HEK-293T cells results in cell proliferation, illustrating the conservation of this important cell proliferation pathway. Using these human cells, we show that loss of DIS3L2 results in an increase in the PI3-Kinase/AKT signalling pathway, which we subsequently show to contribute towards the proliferation phenotype in Drosophila. Our work therefore provides the first mechanistic explanation for DIS3L2-induced overgrowth in humans and flies and identifies an ancient proliferation pathway controlled by Dis3L2 to regulate cell proliferation and tissue growth.


Asunto(s)
Proliferación Celular , Discos Imaginales/metabolismo , Animales , Proteína 1 Similar a Quitinasa-3/química , Proteína 1 Similar a Quitinasa-3/metabolismo , Secuencia Conservada , Proteínas de Drosophila/metabolismo , Drosophila melanogaster , Glicoproteínas/metabolismo , Células HEK293 , Humanos , Discos Imaginales/crecimiento & desarrollo , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal
3.
J Steroid Biochem Mol Biol ; 233: 106371, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37516405

RESUMEN

The colon is the largest hormonally active tissue in the human body. It has been known for over a hundred years that various hormones and bioactive peptides play important roles in colon function. More recently there is a growing interest in the role the sex steroids, oestrogens and androgens, may play in both normal colon physiology and colon pathophysiology. In this review, we examine the potential role oestrogens and androgens play in the colon. The metabolism and subsequent action of sex steroids in colonic tissue is discussed and how these hormones impact colon motility is investigated. Furthermore, we also determine how oestrogens and androgens influence colorectal cancer incidence and development and highlight potential new therapeutic targets for this malignancy. This review also examines how sex steroids potentially impact the severity and progression of other colon disease, such as diverticulitis, irritable bowel syndrome, and polyp formation.


Asunto(s)
Andrógenos , Hormonas Esteroides Gonadales , Humanos , Andrógenos/metabolismo , Estrógenos/metabolismo , Colon/metabolismo , Esteroides
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA