Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Emerg Infect Dis ; 30(7): 1406-1409, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38916573

RESUMEN

We describe a case of a 46-year-old man in Missouri, USA, with newly diagnosed advanced HIV and PCR-confirmed mpox keratitis. The keratitis initially resolved after intravenous tecovirimat and penicillin for suspected ocular syphilis coinfection. Despite a confirmatory negative PCR, he developed relapsed, ipsilateral PCR-positive keratitis and severe ocular mpox requiring corneal transplant.


Asunto(s)
Queratitis , Recurrencia , Humanos , Persona de Mediana Edad , Masculino , Queratitis/diagnóstico , Queratitis/microbiología , Queratitis/tratamiento farmacológico , Missouri , Infecciones por VIH/complicaciones , Infecciones por VIH/tratamiento farmacológico , Sífilis/diagnóstico , Sífilis/tratamiento farmacológico
2.
Am J Infect Control ; 47(12): 1449-1452, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31326263

RESUMEN

BACKGROUND: Hand hygiene is the most important intervention to reduce the risk of transmission of pathogens in health care. Assurance of effective hand hygiene improvement campaigns includes adequate data analytics for reporting compliance. Traditional analytical approaches for monitoring hand hygiene compliance suffer from several limitations, including autocorrelation. The objective of this study was to use a novel time series anomaly detection algorithm to analyze routine hand hygiene compliance data. METHODS: Hand hygiene compliance data were collected daily by trained observers in a large academic medical center. Statistical process control p-charts were used as a comparison method of analysis per facility protocol. Time series anomaly detection was carried out using the seasonal and trend decomposition using LOESS (STL) algorithm. RESULTS: A total of 34 months of hand hygiene compliance data were analyzed. Traditional statistical process control p-charts identified over 76% of rates as special-cause variation, whereas STL identified 18% of rates as anomalous. CONCLUSIONS: This study supports the use of time series anomaly detection for the routine surveillance of hand hygiene compliance data. This method will facilitate specific and accurate feedback, helping to improve this critical approach for improving patient safety.


Asunto(s)
Infección Hospitalaria/prevención & control , Adhesión a Directriz/estadística & datos numéricos , Higiene de las Manos/estadística & datos numéricos , Transmisión de Enfermedad Infecciosa de Profesional a Paciente/prevención & control , Centros Médicos Académicos , Personal de Salud , Humanos , Control de Infecciones/métodos , Aprendizaje Automático , Seguridad del Paciente
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA