Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Mol Pain ; 19: 17448069231218353, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37982142

RESUMEN

Chronic pain is one of the most devastating and unpleasant conditions, associated with many pathological states. Tissue or nerve injuries induce extensive neurobiological plasticity in nociceptive neurons, which leads to chronic pain. Recent studies suggest that cyclin-dependent kinase 5 (CDK5) in primary afferents is a key neuronal kinase that modulates nociception through phosphorylation under pathological conditions. However, the impact of the CDK5 on nociceptor activity especially in human sensory neurons is not known. To determine the CDK5-mediated regulation of human dorsal root ganglia (hDRG) neuronal properties, we have performed the whole-cell patch clamp recordings in neurons dissociated from hDRG. CDK5 activation induced by overexpression of p35 depolarized the resting membrane potential (RMP) and reduced the rheobase currents as compared to the control neurons. CDK5 activation changed the shape of the action potential (AP) by increasing AP -rise time, -fall time, and -half width. The application of a prostaglandin E2 (PG) and bradykinin (BK) cocktail in control hDRG neurons induced the depolarization of RMP and the reduction of rheobase currents along with increased AP rise time. However, PG and BK applications failed to induce any significant changes in the p35-overexpressing group. We conclude that, in dissociated hDRGs neurons, CDK5 activation through the overexpression of p35 broadens the AP and that CDK5 may play important roles in the modulation of AP properties in human primary afferents under the condition in which CDK5 is upregulated, contributing to chronic pain.


Asunto(s)
Dolor Crónico , Humanos , Potenciales de Acción , Quinasa 5 Dependiente de la Ciclina/metabolismo , Fosforilación , Células Receptoras Sensoriales/metabolismo
2.
Nat Immunol ; 12(4): 312-9, 2011 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-21297643

RESUMEN

The molecular mechanisms that direct the development of TCRαß+CD8αα+ intestinal intraepithelial lymphocytes (IELs) are not thoroughly understood. Here we show that transforming growth factor-ß (TGF-ß) controls the development of TCRαß+CD8αα+ IELs. Mice with either a null mutation in the gene encoding TGF-ß1 or T cell-specific deletion of TGF-ß receptor I lacked TCRαß+CD8αα+ IELs, whereas mice with transgenic overexpression of TGF-ß1 had a larger population of TCRαß+CD8αα+ IELs. We observed defective development of the TCRαß+CD8αα+ IEL thymic precursors (CD4⁻CD8⁻TCRαß+CD5+) in the absence of TGF-ß. In addition, we found that TGF-ß signaling induced CD8α expression in TCRαß+CD8αα+ IEL thymic precursors and induced and maintained CD8α expression in peripheral populations of T cells. Our data demonstrate a previously unrecognized role for TGF-ß in the development of TCRαß+CD8αα+ IELs and the expression of CD8α in T cells.


Asunto(s)
Antígenos CD8/metabolismo , Linfocitos/metabolismo , Receptores de Antígenos de Linfocitos T alfa-beta/metabolismo , Factor de Crecimiento Transformador beta1/metabolismo , Animales , Linfocitos T CD4-Positivos/citología , Linfocitos T CD4-Positivos/efectos de los fármacos , Linfocitos T CD4-Positivos/metabolismo , Antígenos CD8/genética , Linfocitos T CD8-positivos/citología , Linfocitos T CD8-positivos/efectos de los fármacos , Linfocitos T CD8-positivos/metabolismo , Proliferación Celular , Células Cultivadas , Células Epiteliales/citología , Células Epiteliales/metabolismo , Citometría de Flujo , Expresión Génica/efectos de los fármacos , Mucosa Intestinal/citología , Mucosa Intestinal/metabolismo , Recuento de Linfocitos , Linfocitos/citología , Linfocitos/efectos de los fármacos , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Receptores de Antígenos de Linfocitos T alfa-beta/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Proteína smad3/genética , Proteína smad3/metabolismo , Timo/citología , Timo/metabolismo , Factor de Crecimiento Transformador beta1/genética , Factor de Crecimiento Transformador beta1/farmacología
3.
Mol Pain ; 18: 17448069221111473, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35726573

RESUMEN

Cyclin dependent kinase 5 (Cdk5) is a key neuronal kinase whose activity can modulate thermo-, mechano-, and chemo-nociception. Cdk5 can modulate nociceptor firing by phosphorylating pain transducing ion channels like the transient receptor potential vanilloid 1 (TRPV1), a thermoreceptor that is activated by noxious heat, acidity, and capsaicin. TRPV1 is phosphorylated by Cdk5 at threonine-407 (T407), which then inhibits Ca2+ dependent desensitization. To explore the in vivo implications of Cdk5-mediated TRPV1 phosphorylation on pain perception, we engineered a phospho-null mouse where we replaced T407 with alanine (T407A). The T407A point mutation did not affect the expression of TRPV1 in nociceptors of the dorsal root ganglia and trigeminal ganglia (TG). However, behavioral tests showed that the TRPV1T407A knock-in mice have reduced aversion to oral capsaicin along with a trend towards decreased facial displays of pain after a subcutaneous injection of capsaicin into the vibrissal pad. In addition, the TRPV1T407A mice display basal thermal hypoalgesia with increased paw withdrawal latency while tested on a hot plate. These results indicate that phosphorylation of TRPV1 by Cdk5 can have important consequences on pain perception, as loss of the Cdk5 phosphorylation site reduced capsaicin- and heat-evoked pain behaviors in mice.


Asunto(s)
Capsaicina , Quinasa 5 Dependiente de la Ciclina/metabolismo , Canales Catiónicos TRPV/metabolismo , Animales , Capsaicina/farmacología , Quinasa 5 Dependiente de la Ciclina/genética , Ganglios Espinales/metabolismo , Ratones , Nocicepción , Dolor/genética , Dolor/metabolismo , Fosforilación , Treonina/metabolismo
4.
J Biol Chem ; 288(44): 32074-92, 2013 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-24056369

RESUMEN

Three homologues of TGF-ß exist in mammals as follows: TGF-ß1, TGF-ß2, and TGF-ß3. All three proteins share high homology in their amino acid sequence, yet each TGF-ß isoform has unique heterologous motifs that are highly conserved during evolution. Although these TGF-ß proteins share similar properties in vitro, isoform-specific properties have been suggested through in vivo studies and by the unique phenotypes for each TGF-ß knock-out mouse. To test our hypothesis that each of these homologues has nonredundant functions, and to identify such isoform-specific roles, we genetically exchanged the coding sequence of the mature TGF-ß1 ligand with a sequence from TGF-ß3 using targeted recombination to create chimeric TGF-ß1/3 knock-in mice (TGF-ß1(Lß3/Lß3)). In the TGF-ß1(Lß3/Lß3) mouse, localization and activation still occur through the TGF-ß1 latent associated peptide, but cell signaling is triggered through the TGF-ß3 ligand that binds to TGF-ß receptors. Unlike TGF-ß1(-/-) mice, the TGF-ß1(Lß3/Lß3) mice show neither embryonic lethality nor signs of multifocal inflammation, demonstrating that knock-in of the TGF-ß3 ligand can prevent the vasculogenesis defects and autoimmunity associated with TGF-ß1 deficiency. However, the TGF-ß1(Lß3/Lß3) mice have a shortened life span and display tooth and bone defects, indicating that the TGF-ß homologues are not completely interchangeable. Remarkably, the TGF-ß1(Lß3/Lß3) mice display an improved metabolic phenotype with reduced body weight gain and enhanced glucose tolerance by induction of beneficial changes to the white adipose tissue compartment. These findings reveal both redundant and unique nonoverlapping functional diversity in TGF-ß isoform signaling that has relevance to the design of therapeutics aimed at targeting the TGF-ß pathway in human disease.


Asunto(s)
Glucosa/metabolismo , Transducción de Señal/fisiología , Factor de Crecimiento Transformador beta1/metabolismo , Factor de Crecimiento Transformador beta3/metabolismo , Animales , Células COS , Chlorocebus aethiops , Técnicas de Sustitución del Gen , Glucosa/genética , Células Hep G2 , Humanos , Inflamación/genética , Inflamación/metabolismo , Ratones , Ratones Endogámicos BALB C , Ratones Transgénicos , Neovascularización Fisiológica/fisiología , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Porcinos , Factor de Crecimiento Transformador beta1/genética , Factor de Crecimiento Transformador beta3/genética
5.
Res Sq ; 2024 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-38712195

RESUMEN

Autoimmune diseases such as rheumatoid arthritis (RA) can promote states of chronic Inflammation with accompanying tissue destruction and pain. RA can cause inflammatory synovitis in peripheral joints, particularly within the hands and feet, but can also sometimes trigger temporomandibular joint (TMJ) arthralgia. To better understand the effects of ongoing Inflammation-induced pain signaling, dorsal root ganglia (DRGs) were acquired from individuals with RA for transcriptomic study. We conducted RNA sequencing from the L5 DRGs because it contains the soma of the sensory neurons that innervate the affected joints in the foot. DRGs from 5 RA patients were compared with 9 non-arthritic controls. RNA-seq of L5 DRGs identified 128 differentially expressed genes (DEGs) that were dysregulated in the RA subjects as compared to the non-arthritic controls. The DRG resides outside the blood brain barrier and, as such, our initial transcriptome analysis detected signs of an autoimmune disorder including the upregulated expression of immunoglobulins and other immunologically related genes within the DRGs of the RA donors. Additionally, we saw the upregulation in genes implicated in neurogenesis that could promote pain hypersensitivity. overall, our DRG analysis suggests that there are upregulated inflammatory and pain signaling pathways that can contribute to chronic pain in RA.

6.
bioRxiv ; 2023 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-37398398

RESUMEN

Chronic pain is one of the most devastating and unpleasant conditions, associated with many pathological conditions. Tissue or nerve injuries induce comprehensive neurobiological plasticity in nociceptive neurons, which leads to chronic pain. Recent studies suggest that cyclin-dependent kinase 5 (CDK5) in primary afferents is a key neuronal kinase that modulates nociception through phosphorylation-dependent manner under pathological conditions. However, the impact of the CDK5 on nociceptor activity especially in human sensory neurons are not known. To determine the CDK5-mediated regulation of human dorsal root ganglia (hDRG) neuronal properties, we have performed the whole-cell patch clamp recordings in neurons dissociated from hDRG. CDK5 activation induced by overexpression of p35 depolarized the resting membrane potential and reduced the rheobase currents as compared to the uninfected neurons. CDK5 activation evidently changed the shape of the action potential (AP) by increasing AP rise time, AP fall time, and AP half width. The application of a prostaglandin E2 (PG) and bradykinin (BK) cocktail in uninfected hDRG neurons induced the depolarization of RMP and the reduction of rheobase currents along with increased AP rise time. However, PG and BK applications failed to induce any further significant changes in addition to the aforementioned changes of the membrane properties and AP parameters in the p35-overexpressing group. We conclude that CDK5 activation through the overexpression of p35 in dissociated hDRG neurons broadens AP in hDRG neurons and that CDK5 may play important roles in the modulation of AP properties in human primary afferents under pathological conditions, contributing to chronic pain.

7.
bioRxiv ; 2023 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-37502949

RESUMEN

Filament systems are comprised of fibrous and globular cytoskeletal proteins and are key elements regulating cell shape, rigidity, and dynamics. The cellular localization and assembly of neurofilaments depend on phosphorylation by kinases. The involvement of the BRCA1 (Breast cancer associated protein 1)/BARD1 (BRCA1-associated RING domain 1) pathways in Alzheimer disease (AD) is suggested by colocalization studies. In particular, BRCA1 accumulation within neurofibrillary tangles and colocalization with tau aggregates in the cytoplasm of AD patients implicates the involvement of mutant forms of BRCA1/BARD1 proteins in disease pathogenesis. The purpose of this study is to show that the location of mutations in the translated BARD1, specifically within ankyrin repeats, has strong correlation with the Cdk5 motifs for phosphorylation. Mapping of the mutation sites on the protein's three-dimensional structure and estimation of the backbone dihedral angles show transitions between the canonical helical and extended conformations of the tetrapeptide sequence of ankyrin repeats. Clustering of mutations in BARD1 ankyrin repeats near the N-termini of the helices with T/SXXH motifs provides a basis for conformational transitions that might be necessary to ensure the compatibility of the substrate with active site geometry and accessibility of the substrate to the kinase. Ankyrin repeats are interaction sites for phosphorylation-dependent dynamic assembly of proteins including those involved in transcription regulation and signaling, and present potential targets for the design of new drugs.

8.
Sci Rep ; 12(1): 4729, 2022 03 18.
Artículo en Inglés | MEDLINE | ID: mdl-35304484

RESUMEN

Pathological sensations caused by peripheral painful neuropathy occurring in Type 2 diabetes mellitus (T2DM) are often described as 'sharp' and 'burning' and are commonly spontaneous in origin. Proposed etiologies implicate dysfunction of nociceptive sensory neurons in dorsal root ganglia (DRG) induced by generation of reactive oxygen species, microvascular defects, and ongoing axonal degeneration and regeneration. To investigate the molecular mechanisms contributing to diabetic pain, DRGs were acquired postmortem from patients who had been experiencing painful diabetic peripheral neuropathy (DPN) and subjected to transcriptome analyses to identify genes contributing to pathological processes and neuropathic pain. DPN occurs in distal extremities resulting in the characteristic "glove and stocking" pattern. Accordingly, the L4 and L5 DRGs, which contain the perikarya of primary afferent neurons innervating the foot, were analyzed from five DPN patients and compared with seven controls. Transcriptome analyses identified 844 differentially expressed genes. We observed increases in levels of inflammation-associated transcripts from macrophages in DPN patients that may contribute to pain hypersensitivity and, conversely, there were frequent decreases in neuronally-related genes. The elevated inflammatory gene profile and the accompanying downregulation of multiple neuronal genes provide new insights into intraganglionic pathology and mechanisms causing neuropathic pain in DPN patients with T2DM.


Asunto(s)
Diabetes Mellitus Tipo 2 , Neuropatías Diabéticas , Neuralgia , Humanos , Diabetes Mellitus Tipo 2/complicaciones , Diabetes Mellitus Tipo 2/genética , Neuropatías Diabéticas/genética , Ganglios Espinales , Perfilación de la Expresión Génica , Inflamación/genética , Neuralgia/genética , Células Receptoras Sensoriales , Transcriptoma
9.
Lab Invest ; 90(4): 543-55, 2010 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-20142803

RESUMEN

Transforming growth factor-beta (TGF-beta) signaling is known to affect salivary gland physiology by influencing branching morphogenesis, regulating ECM deposition, and controlling immune homeostasis. To study the role of TGF-beta1 in the salivary gland, we created a transgenic mouse (beta1(glo)) that conditionally overexpresses active TGF-beta1 upon genomic recombination by Cre recombinase. beta1(glo) mice were bred with an MMTV (mouse mammary tumor virus)-Cre (MC) transgenic line that expresses the Cre recombinase predominantly in the secretory cells of both the mammary and salivary glands. Although most of the double positive (beta1(glo)/MC) pups die either in utero or just after birth, clear defects in salivary gland morphogenesis such as reduced branching and increased mesenchyme could be seen. Those beta1(glo)/MC mice that survived into adulthood, however, had hyposalivation due to salivary gland fibrosis and acinar atrophy. Increased TGF-beta signaling was observed in the salivary gland with elevated phosphorylation of Smad2 and concomitant increase in ECM deposition. In particular, aberrant TGF-beta1 overexpression caused salivary gland hypofunction in this mouse model because of the replacement of normal glandular parenchyma with interstitial fibrous tissue. These results further implicate TGF-beta in pathological cases of salivary gland inflammation and fibrosis that occur with chronic infections in the glands or with the autoimmune disease, Sjögren's syndrome, or with radiation therapy given to head-and-neck cancer patients.


Asunto(s)
Enfermedades de las Glándulas Salivales/fisiopatología , Glándulas Salivales/crecimiento & desarrollo , Factor de Crecimiento Transformador beta1/fisiología , Xerostomía/fisiopatología , Animales , Células Cultivadas , Modelos Animales de Enfermedad , Fibrosis/fisiopatología , Inflamación/fisiopatología , Ratones , Ratones Transgénicos , Glándulas Salivales/patología
10.
Sci Rep ; 8(1): 1177, 2018 01 19.
Artículo en Inglés | MEDLINE | ID: mdl-29352128

RESUMEN

Cyclin-dependent kinase 5 (Cdk5) is a key neuronal kinase that is upregulated during inflammation, and can subsequently modulate sensitivity to nociceptive stimuli. We conducted an in silico screen for Cdk5 phosphorylation sites within proteins whose expression was enriched in nociceptors and identified the chemo-responsive ion channel Transient Receptor Potential Ankyrin 1 (TRPA1) as a possible Cdk5 substrate. Immunoprecipitated full length TRPA1 was shown to be phosphorylated by Cdk5 and this interaction was blocked by TFP5, an inhibitor that prevents activation of Cdk5. In vitro peptide-based kinase assay revealed that four of six TRPA1 Cdk5 consensus sites acted as substrates for Cdk5, and modeling of the ankyrin repeats disclosed that phosphorylation would occur at characteristic pockets within the (T/S)PLH motifs. Calcium imaging of trigeminal ganglion neurons from genetically engineered mice overexpressing or lacking the Cdk5 activator p35 displayed increased or decreased responsiveness, respectively, to stimulation with the TRPA1 agonist allylisothiocyanate (AITC). AITC-induced chemo-nociceptive behavior was also heightened in vivo in mice overexpressing p35 while being reduced in p35 knockout mice. Our findings demonstrate that TRPA1 is a substrate of Cdk5 and that Cdk5 activity is also able to modulate TRPA1 agonist-induced calcium influx and chemo-nociceptive behavioral responses.


Asunto(s)
Quinasa 5 Dependiente de la Ciclina/metabolismo , Nocicepción , Canal Catiónico TRPA1/metabolismo , Animales , Calcio/metabolismo , Biología Computacional/métodos , Quinasa 5 Dependiente de la Ciclina/química , Quinasa 5 Dependiente de la Ciclina/genética , Humanos , Ratones , Ratones Noqueados , Modelos Moleculares , Imagen Molecular , Neuronas/metabolismo , Fosforilación , Conformación Proteica , Especificidad por Sustrato , Canal Catiónico TRPA1/química , Canal Catiónico TRPA1/genética , Ganglio del Trigémino/metabolismo
11.
Sci Rep ; 6: 22007, 2016 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-26902776

RESUMEN

TRPV1 is a polymodally activated cation channel acting as key receptor in nociceptive neurons. Its function is strongly affected by kinase-mediated phosphorylation leading to hyperalgesia and allodynia. We present behavioral and molecular data indicating that TRPV1 is strongly modulated by Cdk5-mediated phosphorylation at position threonine-407(mouse)/T406(rat). Increasing or decreasing Cdk5 activity in genetically engineered mice has severe consequences on TRPV1-mediated pain perception leading to altered capsaicin consumption and sensitivity to heat. To understand the molecular and structural/functional consequences of TRPV1 phosphorylation, we generated various rTRPV1T406 receptor variants to mimic phosphorylated or dephosphorylated receptor protein. We performed detailed functional characterization by means of electrophysiological whole-cell and single-channel recordings as well as Ca(2+)-imaging and challenged recombinant rTRPV1 receptors with capsaicin, low pH, or heat. We found that position T406 is critical for the function of TRPV1 by modulating ligand-sensitivity, activation, and desensitization kinetics as well as voltage-dependence. Based on high resolution structures of TRPV1, we discuss T406 being involved in the molecular transition pathway, its phosphorylation leading to a conformational change and influencing the gating of the receptor. Cdk5-mediated phosphorylation of T406 can be regarded as an important molecular switch modulating TRPV1-related behavior and pain sensitivity.


Asunto(s)
Condicionamiento Operante/fisiología , Quinasa 5 Dependiente de la Ciclina/genética , Hiperalgesia/metabolismo , Nocicepción/fisiología , Umbral del Dolor/fisiología , Canales Catiónicos TRPV/genética , Animales , Células CHO , Calcio/metabolismo , Capsaicina/farmacología , Cricetulus , Quinasa 5 Dependiente de la Ciclina/metabolismo , Ingestión de Líquidos , Expresión Génica , Células HEK293 , Calor , Humanos , Concentración de Iones de Hidrógeno , Hiperalgesia/genética , Hiperalgesia/fisiopatología , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Técnicas de Placa-Clamp , Fosforilación , Ratas , Canales Catiónicos TRPV/metabolismo , Ganglio del Trigémino/efectos de los fármacos , Ganglio del Trigémino/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA