Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 127
Filtrar
1.
Nature ; 591(7848): 105-110, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33627874

RESUMEN

Animal nervous system organization is crucial for all body functions and its disruption can lead to severe cognitive and behavioural impairment1. This organization relies on features across scales-from the localization of synapses at the nanoscale, through neurons, which possess intricate neuronal morphologies that underpin circuit organization, to stereotyped connections between different regions of the brain2. The sheer complexity of this organ means that the feat of reconstructing and modelling the structure of a complete nervous system that is integrated across all of these scales has yet to be achieved. Here we present a complete structure-function model of the main neuropil in the nematode Caenorhabditis elegans-the nerve ring-which we derive by integrating the volumetric reconstructions from two animals with corresponding3 synaptic and gap-junctional connectomes. Whereas previously the nerve ring was considered to be a densely packed tract of neural processes, we uncover internal organization and show how local neighbourhoods spatially constrain and support the synaptic connectome. We find that the C. elegans connectome is not invariant, but that a precisely wired core circuit is embedded in a background of variable connectivity, and identify a candidate reference connectome for the core circuit. Using this reference, we propose a modular network architecture of the C. elegans brain that supports sensory computation and integration, sensorimotor convergence and brain-wide coordination. These findings reveal scalable and robust features of brain organization that may be universal across phyla.


Asunto(s)
Encéfalo/citología , Encéfalo/fisiología , Caenorhabditis elegans/citología , Caenorhabditis elegans/fisiología , Conectoma , Animales , Encéfalo/anatomía & histología , Caenorhabditis elegans/anatomía & histología , Uniones Comunicantes , Modelos Biológicos , Vías Nerviosas , Neuritas , Neurópilo/citología , Neurópilo/fisiología , Sinapsis/metabolismo
2.
PLoS Genet ; 19(11): e1011008, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37930961

RESUMEN

The cuticles of ecdysozoan animals are barriers to material loss and xenobiotic insult. Key to this barrier is lipid content, the establishment of which is poorly understood. Here, we show that the p-glycoprotein PGP-14 functions coincidently with the sphingomyelin synthase SMS-5 to establish a polar lipid barrier within the pharyngeal cuticle of the nematode C. elegans. We show that PGP-14 and SMS-5 are coincidentally expressed in the epithelium that surrounds the anterior pharyngeal cuticle where PGP-14 localizes to the apical membrane. pgp-14 and sms-5 also peak in expression at the time of new cuticle synthesis. Loss of PGP-14 and SMS-5 dramatically reduces pharyngeal cuticle staining by Nile Red, a key marker of polar lipids, and coincidently alters the nematode's response to a wide-range of xenobiotics. We infer that PGP-14 exports polar lipids into the developing pharyngeal cuticle in an SMS-5-dependent manner to safeguard the nematode from environmental insult.


Asunto(s)
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Animales , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Membrana Celular/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Lípidos , Permeabilidad
3.
Nature ; 571(7763): 63-71, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31270481

RESUMEN

Knowledge of connectivity in the nervous system is essential to understanding its function. Here we describe connectomes for both adult sexes of the nematode Caenorhabditis elegans, an important model organism for neuroscience research. We present quantitative connectivity matrices that encompass all connections from sensory input to end-organ output across the entire animal, information that is necessary to model behaviour. Serial electron microscopy reconstructions that are based on the analysis of both new and previously published electron micrographs update previous results and include data on the male head. The nervous system differs between sexes at multiple levels. Several sex-shared neurons that function in circuits for sexual behaviour are sexually dimorphic in structure and connectivity. Inputs from sex-specific circuitry to central circuitry reveal points at which sexual and non-sexual pathways converge. In sex-shared central pathways, a substantial number of connections differ in strength between the sexes. Quantitative connectomes that include all connections serve as the basis for understanding how complex, adaptive behavior is generated.


Asunto(s)
Caenorhabditis elegans/metabolismo , Conectoma , Sistema Nervioso/anatomía & histología , Sistema Nervioso/metabolismo , Caracteres Sexuales , Animales , Conducta Animal , Caenorhabditis elegans/citología , Femenino , Cabeza/anatomía & histología , Cabeza/inervación , Organismos Hermafroditas , Masculino , Microscopía Electrónica , Actividad Motora , Movimiento , Sistema Nervioso/citología , Vías Nerviosas
5.
PLoS Genet ; 18(1): e1010016, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-35089924

RESUMEN

The functional properties of neural circuits are defined by the patterns of synaptic connections between their partnering neurons, but the mechanisms that stabilize circuit connectivity are poorly understood. We systemically examined this question at synapses onto newly characterized dendritic spines of C. elegans GABAergic motor neurons. We show that the presynaptic adhesion protein neurexin/NRX-1 is required for stabilization of postsynaptic structure. We find that early postsynaptic developmental events proceed without a strict requirement for synaptic activity and are not disrupted by deletion of neurexin/nrx-1. However, in the absence of presynaptic NRX-1, dendritic spines and receptor clusters become destabilized and collapse prior to adulthood. We demonstrate that NRX-1 delivery to presynaptic terminals is dependent on kinesin-3/UNC-104 and show that ongoing UNC-104 function is required for postsynaptic maintenance in mature animals. By defining the dynamics and temporal order of synapse formation and maintenance events in vivo, we describe a mechanism for stabilizing mature circuit connectivity through neurexin-based adhesion.


Asunto(s)
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Moléculas de Adhesión Celular Neuronal/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Animales , Axones/metabolismo , Espinas Dendríticas/metabolismo , Terminales Presinápticos/metabolismo
6.
PLoS Genet ; 18(8): e1010348, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35960773

RESUMEN

Epithelial cells secrete apical extracellular matrices to form protruding structures such as denticles, ridges, scales, or teeth. The mechanisms that shape these structures remain poorly understood. Here, we show how the actin cytoskeleton and a provisional matrix work together to sculpt acellular longitudinal alae ridges in the cuticle of adult C. elegans. Transient assembly of longitudinal actomyosin filaments in the underlying lateral epidermis accompanies deposition of the provisional matrix at the earliest stages of alae formation. Actin is required to pattern the provisional matrix into longitudinal bands that are initially offset from the pattern of longitudinal actin filaments. These bands appear ultrastructurally as alternating regions of adhesion and separation within laminated provisional matrix layers. The provisional matrix is required to establish these demarcated zones of adhesion and separation, which ultimately give rise to alae ridges and their intervening valleys, respectively. Provisional matrix proteins shape the alae ridges and valleys but are not present within the final structure. We propose a morphogenetic mechanism wherein cortical actin patterns are relayed to the laminated provisional matrix to set up distinct zones of matrix layer separation and accretion that shape a permanent and acellular matrix structure.


Asunto(s)
Actinas , Caenorhabditis elegans , Actinas/metabolismo , Animales , Caenorhabditis elegans/metabolismo , Citoesqueleto/genética , Matriz Extracelular/metabolismo , Morfogénesis
7.
Development ; 148(18)2021 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-34195824

RESUMEN

The C. elegans germline is organized as a syncytium in which each germ cell possesses an intercellular bridge that is maintained by a stable actomyosin ring and connected to a common pool of cytoplasm, termed the rachis. How germ cells undergo cytokinesis while maintaining this syncytial architecture is not completely understood. Here, we use live imaging to characterize primordial germ cell (PGC) division in C. elegans first-stage larvae. We show that each PGC possesses a stable intercellular bridge that connects it to a common pool of cytoplasm, which we term the proto-rachis. We further show that the first PGC cytokinesis is incomplete and that the stabilized cytokinetic ring progressively moves towards the proto-rachis and eventually integrates with it. Our results support a model in which the initial expansion of the C. elegans syncytial germline occurs by incomplete cytokinesis, where one daughter germ cell inherits the actomyosin ring that was newly formed by stabilization of the cytokinetic ring, while the other inherits the pre-existing stable actomyosin ring. We propose that such a mechanism of iterative cytokinesis incompletion underpins C. elegans germline expansion and maintenance.


Asunto(s)
Caenorhabditis elegans/citología , Citocinesis/fisiología , Células Germinativas/citología , Citoesqueleto de Actina/fisiología , Actomiosina/fisiología , Animales , Citoplasma/fisiología , Células Gigantes/fisiología
8.
Development ; 147(12)2020 06 17.
Artículo en Inglés | MEDLINE | ID: mdl-32467239

RESUMEN

Molecular chaperones often work collaboratively with the ubiquitylation-proteasome system (UPS) to facilitate the degradation of misfolded proteins, which typically safeguards cellular differentiation and protects cells from stress. In this study, however, we report that the Hsp70/Hsp90 chaperone machinery and an F-box protein, MEC-15, have opposing effects on neuronal differentiation, and that the chaperones negatively regulate neuronal morphogenesis and functions. Using the touch receptor neurons (TRNs) of Caenorhabditis elegans, we find that mec-15(-) mutants display defects in microtubule formation, neurite growth, synaptic development and neuronal functions, and that these defects can be rescued by the loss of Hsp70/Hsp90 chaperones and co-chaperones. MEC-15 probably functions in a Skp-, Cullin- and F-box- containing complex to degrade DLK-1, which is an Hsp90 client protein stabilized by the chaperones. The abundance of DLK-1, and likely other Hsp90 substrates, is fine-tuned by the antagonism between MEC-15 and the chaperones; this antagonism regulates TRN development, as well as synaptic functions of GABAergic motor neurons. Therefore, a balance between the UPS and the chaperones tightly controls neuronal differentiation.


Asunto(s)
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Proteínas F-Box/metabolismo , Proteínas HSP90 de Choque Térmico/metabolismo , Microtúbulos/metabolismo , Neuritas/fisiología , Animales , Proteínas de Caenorhabditis elegans/antagonistas & inhibidores , Proteínas de Caenorhabditis elegans/genética , Proteínas F-Box/antagonistas & inhibidores , Proteínas F-Box/genética , Neuronas GABAérgicas/metabolismo , Proteínas HSP90 de Choque Térmico/antagonistas & inhibidores , Proteínas HSP90 de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Quinasas Quinasa Quinasa PAM/metabolismo , Chaperonas Moleculares/antagonistas & inhibidores , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Mutagénesis , Neuronas Aferentes/metabolismo , Fosforilación , Complejo de la Endopetidasa Proteasomal/metabolismo , Estabilidad Proteica , Interferencia de ARN , ARN Bicatenario , Ubiquitina/metabolismo , Ubiquitinación
9.
Nature ; 542(7641): 367-371, 2017 02 16.
Artículo en Inglés | MEDLINE | ID: mdl-28178240

RESUMEN

The toxicity of misfolded proteins and mitochondrial dysfunction are pivotal factors that promote age-associated functional neuronal decline and neurodegenerative disease. Accordingly, neurons invest considerable cellular resources in chaperones, protein degradation, autophagy and mitophagy to maintain proteostasis and mitochondrial quality. Complicating the challenges of neuroprotection, misfolded human disease proteins and mitochondria can move into neighbouring cells via unknown mechanisms, which may promote pathological spread. Here we show that adult neurons from Caenorhabditis elegans extrude large (approximately 4 µm) membrane-surrounded vesicles called exophers that can contain protein aggregates and organelles. Inhibition of chaperone expression, autophagy or the proteasome, in addition to compromising mitochondrial quality, enhances the production of exophers. Proteotoxically stressed neurons that generate exophers subsequently function better than similarly stressed neurons that did not produce exophers. The extruded exopher transits through surrounding tissue in which some contents appear degraded, but some non-degradable materials can subsequently be found in more remote cells, suggesting secondary release. Our observations suggest that exopher-genesis is a potential response to rid cells of neurotoxic components when proteostasis and organelle function are challenged. We propose that exophers are components of a conserved mechanism that constitutes a fundamental, but formerly unrecognized, branch of neuronal proteostasis and mitochondrial quality control, which, when dysfunctional or diminished with age, might actively contribute to pathogenesis in human neurodegenerative disease and brain ageing.


Asunto(s)
Caenorhabditis elegans/metabolismo , Micropartículas Derivadas de Células/metabolismo , Mitocondrias/metabolismo , Neuronas/metabolismo , Neuronas/patología , Neuroprotección/fisiología , Agregado de Proteínas , Envejecimiento/metabolismo , Envejecimiento/patología , Animales , Autofagia , Caenorhabditis elegans/citología , Citoplasma/metabolismo , Chaperonas Moleculares/metabolismo , Enfermedades Neurodegenerativas/metabolismo , Enfermedades Neurodegenerativas/patología , Oxidación-Reducción , Complejo de la Endopetidasa Proteasomal/metabolismo
10.
Development ; 146(19)2019 10 10.
Artículo en Inglés | MEDLINE | ID: mdl-31540912

RESUMEN

During the first hours of embryogenesis, formation of higher-order heterochromatin coincides with the loss of developmental potential. Here, we examine the relationship between these two events, and we probe the processes that contribute to the timing of their onset. Mutations that disrupt histone H3 lysine 9 (H3K9) methyltransferases reveal that the methyltransferase MET-2 helps terminate developmental plasticity, through mono- and di-methylation of H3K9 (me1/me2), and promotes heterochromatin formation, through H3K9me3. Although loss of H3K9me3 perturbs formation of higher-order heterochromatin, embryos are still able to terminate plasticity, indicating that the two processes can be uncoupled. Methylated H3K9 appears gradually in developing C. elegans embryos and depends on nuclear localization of MET-2. We find that the timing of H3K9me2 and nuclear MET-2 is sensitive to rapid cell cycles, but not to zygotic genome activation or cell counting. These data reveal distinct roles for different H3K9 methylation states in the generation of heterochromatin and loss of developmental plasticity by MET-2, and identify the cell cycle as a crucial parameter of MET-2 regulation.


Asunto(s)
Caenorhabditis elegans/embriología , Caenorhabditis elegans/metabolismo , Desarrollo Embrionario , Histonas/metabolismo , Animales , Proteínas de Caenorhabditis elegans/metabolismo , Recuento de Células , Embrión no Mamífero/citología , Gastrulación , Heterocromatina/metabolismo , Interfase , Metilación , ARN Polimerasa II/metabolismo , Fase S , Factores de Tiempo , Transcripción Genética
11.
Traffic ; 20(6): 436-447, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30989774

RESUMEN

Ataxin-2, a conserved RNA-binding protein, is implicated in the late-onset neurodegenerative disease Spinocerebellar ataxia type-2 (SCA2). SCA2 is characterized by shrunken dendritic arbors and torpedo-like axons within the Purkinje neurons of the cerebellum. Torpedo-like axons have been described to contain displaced endoplasmic reticulum (ER) in the periphery of the cell; however, the role of Ataxin-2 in mediating ER function in SCA2 is unclear. We utilized the Caenorhabditis elegans and Drosophila homologs of Ataxin-2 (ATX-2 and DAtx2, respectively) to determine the role of Ataxin-2 in ER function and dynamics in embryos and neurons. Loss of ATX-2 and DAtx2 resulted in collapse of the ER in dividing embryonic cells and germline, and ultrastructure analysis revealed unique spherical stacks of ER in mature oocytes and fragmented and truncated ER tubules in the embryo. ATX-2 and DAtx2 reside in puncta adjacent to the ER in both C. elegans and Drosophila embryos. Lastly, depletion of DAtx2 in cultured Drosophila neurons recapitulated the shrunken dendritic arbor phenotype of SCA2. ER morphology and dynamics were severely disrupted in these neurons. Taken together, we provide evidence that Ataxin-2 plays an evolutionary conserved role in ER dynamics and morphology in C. elegans and Drosophila embryos during development and in fly neurons, suggesting a possible SCA2 disease mechanism.


Asunto(s)
Ataxina-2/metabolismo , Transporte Axonal , Retículo Endoplásmico/metabolismo , Evolución Molecular , Proyección Neuronal , Animales , Caenorhabditis elegans , Células Cultivadas , Drosophila melanogaster , Retículo Endoplásmico/ultraestructura , Neuronas/metabolismo , Neuronas/ultraestructura
12.
Nature ; 526(7573): 385-390, 2015 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-26469050

RESUMEN

Sex differences in behaviour extend to cognitive-like processes such as learning, but the underlying dimorphisms in neural circuit development and organization that generate these behavioural differences are largely unknown. Here we define at the single-cell level-from development, through neural circuit connectivity, to function-the neural basis of a sex-specific learning in the nematode Caenorhabditis elegans. We show that sexual conditioning, a form of associative learning, requires a pair of male-specific interneurons whose progenitors are fully differentiated glia. These neurons are generated during sexual maturation and incorporated into pre-exisiting sex-shared circuits to couple chemotactic responses to reproductive priorities. Our findings reveal a general role for glia as neural progenitors across metazoan taxa and demonstrate that the addition of sex-specific neuron types to brain circuits during sexual maturation is an important mechanism for the generation of sexually dimorphic plasticity in learning.


Asunto(s)
Caenorhabditis elegans/citología , Caenorhabditis elegans/fisiología , Interneuronas/citología , Interneuronas/fisiología , Aprendizaje/fisiología , Neuroglía/citología , Caracteres Sexuales , Animales , Encéfalo/citología , División Celular , Separación Celular , Transdiferenciación Celular , Quimiotaxis , Condicionamiento Clásico/fisiología , Interneuronas/clasificación , Masculino , Vías Nerviosas , Células-Madre Neurales/citología , Neurogénesis , Plasticidad Neuronal , Reproducción/fisiología , Conducta Sexual Animal/fisiología , Maduración Sexual , Análisis de la Célula Individual
13.
PLoS Genet ; 14(3): e1007269, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29590100

RESUMEN

Across phylogeny, glutamate (Glu) signaling plays a critical role in regulating neural excitability, thus supporting many complex behaviors. Perturbed synaptic and extrasynaptic Glu homeostasis in the human brain has been implicated in multiple neuropsychiatric and neurodegenerative disorders including Parkinson's disease, where theories suggest that excitotoxic insults may accelerate a naturally occurring process of dopamine (DA) neuron degeneration. In C. elegans, mutation of the glial expressed gene, swip-10, results in Glu-dependent DA neuron hyperexcitation that leads to elevated DA release, triggering DA signaling-dependent motor paralysis. Here, we demonstrate that swip-10 mutations induce premature and progressive DA neuron degeneration, with light and electron microscopy studies demonstrating the presence of dystrophic dendritic processes, as well as shrunken and/or missing cell soma. As with paralysis, DA neuron degeneration in swip-10 mutants is rescued by glial-specific, but not DA neuron-specific expression of wildtype swip-10, consistent with a cell non-autonomous mechanism. Genetic studies implicate the vesicular Glu transporter VGLU-3 and the cystine/Glu exchanger homolog AAT-1 as potential sources of Glu signaling supporting DA neuron degeneration. Degeneration can be significantly suppressed by mutations in the Ca2+ permeable Glu receptors, nmr-2 and glr-1, in genes that support intracellular Ca2+ signaling and Ca2+-dependent proteolysis, as well as genes involved in apoptotic cell death. Our studies suggest that Glu stimulation of nematode DA neurons in early larval stages, without the protective actions of SWIP-10, contributes to insults that ultimately drive DA neuron degeneration. The swip-10 model may provide an efficient platform for the identification of molecular mechanisms that enhance risk for Parkinson's disease and/or the identification of agents that can limit neurodegenerative disease progression.


Asunto(s)
Proteínas de Caenorhabditis elegans/metabolismo , Neuronas Dopaminérgicas/metabolismo , Ácido Glutámico/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Neuroglía/enzimología , Enfermedad de Parkinson/genética , Transducción de Señal , Animales , Caenorhabditis elegans/genética , Neuronas Dopaminérgicas/patología , Humanos
14.
J Nematol ; 532021.
Artículo en Inglés | MEDLINE | ID: mdl-34761227

RESUMEN

A detailed understanding of nematode anatomy can be leveraged for the development of new parasitic nematode control strategies and for fundamental biological insights through nematode model organisms. The Center for C. elegans Anatomy, with its websites WormAtlas and WormImage, is the central anatomical resource for researchers studying the model organism Caenorhabditis elegans. Here, we announce our expansion of the WormAtlas and WormImage resources beyond C. elegans to include additional nematode species. Towards this goal, we will partner with the Journal of Nematology to write and solicit anatomically focused review chapters for publication in the Journal and corresponding inclusion on the WormAtlas website.

15.
Biol Cell ; 111(4): 95-107, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-30681171

RESUMEN

BACKGROUND INFORMATION: The current consensus on cilia development posits that the ciliary transition zone (TZ) is formed via extension of nine centrosomal microtubules. In this model, TZ structure remains unchanged in microtubule number throughout the cilium life cycle. This model does not however explain structural variations of TZ structure seen in nature and could also lend itself to the misinterpretation that deviations from nine-doublet microtubule ultrastructure represent an abnormal phenotype. Thus, a better understanding of events that occur at the TZ in vivo during metazoan development is required. RESULTS: To address this issue, we characterized ultrastructure of two types of sensory cilia in developing Caenorhabditis elegans. We discovered that, in cephalic male (CEM) and inner labial quadrant (IL2Q) sensory neurons, ciliary TZs are structurally plastic and remodel from one structure to another during animal development. The number of microtubule doublets forming the TZ can be increased or decreased over time, depending on cilia type. Both cases result in structural TZ intermediates different from TZ in cilia of adult animals. In CEM cilia, axonemal extension and maturation occurs concurrently with TZ structural maturation. CONCLUSIONS AND SIGNIFICANCE: Our work extends the current model to include the structural plasticity of metazoan transition zone, which can be structurally delayed, maintained or remodelled in cell type-specific manner.


Asunto(s)
Caenorhabditis elegans/crecimiento & desarrollo , Cilios/ultraestructura , Microtúbulos/ultraestructura , Animales , Caenorhabditis elegans/ultraestructura , Masculino , Neuronas/ultraestructura
16.
PLoS Genet ; 12(8): e1006205, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27482894

RESUMEN

Most epithelial cells secrete a glycoprotein-rich apical extracellular matrix that can have diverse but still poorly understood roles in development and physiology. Zona Pellucida (ZP) domain glycoproteins are common constituents of these matrices, and their loss in humans is associated with a number of diseases. Understanding of the functions, organization and regulation of apical matrices has been hampered by difficulties in imaging them both in vivo and ex vivo. We identified the PAN-Apple, mucin and ZP domain glycoprotein LET-653 as an early and transient apical matrix component that shapes developing epithelia in C. elegans. LET-653 has modest effects on shaping of the vulva and epidermis, but is essential to prevent lumen fragmentation in the very narrow, unicellular excretory duct tube. We were able to image the transient LET-653 matrix by both live confocal imaging and transmission electron microscopy. Structure/function and fluorescence recovery after photobleaching studies revealed that LET-653 exists in two separate luminal matrix pools, a loose fibrillar matrix in the central core of the lumen, to which it binds dynamically via its PAN domains, and an apical-membrane-associated matrix, to which it binds stably via its ZP domain. The PAN domains are both necessary and sufficient to confer a cyclic pattern of duct lumen localization that precedes each molt, while the ZP domain is required for lumen integrity. Ectopic expression of full-length LET-653, but not the PAN domains alone, could expand lumen diameter in the developing gut tube, where LET-653 is not normally expressed. Together, these data support a model in which the PAN domains regulate the ability of the LET-653 ZP domain to interact with other factors at the apical membrane, and this ZP domain interaction promotes expansion and maintenance of lumen diameter. These data identify a transient apical matrix component present prior to cuticle secretion in C. elegans, demonstrate critical roles for this matrix component in supporting lumen integrity within narrow bore tubes such as those found in the mammalian microvasculature, and reveal functional importance of the evolutionarily conserved ZP domain in this tube protecting activity.


Asunto(s)
Proteínas de Caenorhabditis elegans/genética , Caenorhabditis elegans/genética , Matriz Extracelular/genética , Glicoproteínas/genética , Mucinas/genética , Animales , Caenorhabditis elegans/química , Caenorhabditis elegans/ultraestructura , Proteínas de Caenorhabditis elegans/biosíntesis , Proteínas de Caenorhabditis elegans/química , Células Epiteliales/química , Células Epiteliales/metabolismo , Células Epiteliales/ultraestructura , Matriz Extracelular/química , Matriz Extracelular/metabolismo , Matriz Extracelular/ultraestructura , Regulación de la Expresión Génica , Glicoproteínas/biosíntesis , Glicoproteínas/química , Microscopía Electrónica de Transmisión , Mucinas/biosíntesis , Mucinas/química , Dominios Proteicos/genética , Relación Estructura-Actividad , Zona Pelúcida/química , Zona Pelúcida/metabolismo , Zona Pelúcida/ultraestructura
17.
Proc Natl Acad Sci U S A ; 113(30): E4377-86, 2016 07 26.
Artículo en Inglés | MEDLINE | ID: mdl-27402754

RESUMEN

Spinal muscular atrophy (SMA) is caused by depletion of the ubiquitously expressed survival motor neuron (SMN) protein, with 1 in 40 Caucasians being heterozygous for a disease allele. SMN is critical for the assembly of numerous ribonucleoprotein complexes, yet it is still unclear how reduced SMN levels affect motor neuron function. Here, we examined the impact of SMN depletion in Caenorhabditis elegans and found that decreased function of the SMN ortholog SMN-1 perturbed endocytic pathways at motor neuron synapses and in other tissues. Diminished SMN-1 levels caused defects in C. elegans neuromuscular function, and smn-1 genetic interactions were consistent with an endocytic defect. Changes were observed in synaptic endocytic proteins when SMN-1 levels decreased. At the ultrastructural level, defects were observed in endosomal compartments, including significantly fewer docked synaptic vesicles. Finally, endocytosis-dependent infection by JC polyomavirus (JCPyV) was reduced in human cells with decreased SMN levels. Collectively, these results demonstrate for the first time, to our knowledge, that SMN depletion causes defects in endosomal trafficking that impair synaptic function, even in the absence of motor neuron cell death.


Asunto(s)
Proteínas de Caenorhabditis elegans/genética , Endocitosis/genética , Transducción de Señal/genética , Proteína 1 para la Supervivencia de la Neurona Motora/genética , Secuencia de Aminoácidos , Animales , Animales Modificados Genéticamente , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Células Cultivadas , Modelos Animales de Enfermedad , Humanos , Neuronas Motoras/metabolismo , Atrofia Muscular Espinal/genética , Atrofia Muscular Espinal/metabolismo , Interferencia de ARN , Proteína 1 para la Supervivencia de la Neurona Motora/metabolismo , Sinapsis/genética , Sinapsis/metabolismo
18.
Dev Biol ; 429(1): 306-320, 2017 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-28648844

RESUMEN

RNA-binding proteins (RBPs) are essential regulators of gene expression that act through a variety of mechanisms to ensure the proper post-transcriptional regulation of their target RNAs. RBPs in multiple species have been identified as playing crucial roles during development and as having important functions in various adult organ systems, including the heart, nervous, muscle, and reproductive systems. ETR-1, a highly conserved ELAV-Type RNA-binding protein belonging to the CELF/Bruno protein family, has been previously reported to be involved in C. elegans muscle development. Animals depleted of ETR-1 have been previously characterized as arresting at the two-fold stage of embryogenesis. In this study, we show that ETR-1 is expressed in the hermaphrodite somatic gonad and germ line, and that reduction of ETR-1 via RNA interference (RNAi) results in reduced hermaphrodite fecundity. Detailed characterization of this fertility defect indicates that ETR-1 is required in both the somatic tissue and the germ line to ensure wild-type reproductive levels. Additionally, the ability of ETR-1 depletion to suppress the published WEE-1.3-depletion infertility phenotype is dependent on ETR-1 being reduced in the soma. Within the germline of etr-1(RNAi) hermaphrodite animals, we observe a decrease in average oocyte size and an increase in the number of germline apoptotic cell corpses as evident by an increased number of CED-1::GFP and acridine orange positive apoptotic germ cells. Transmission Electron Microscopy (TEM) studies confirm the significant increase in apoptotic cells in ETR-1-depleted animals, and reveal a failure of the somatic gonadal sheath cells to properly engulf dying germ cells in etr-1(RNAi) animals. Through investigation of an established engulfment pathway in C. elegans, we demonstrate that co-depletion of CED-1 and ETR-1 suppresses both the reduced fecundity and the increase in the number of apoptotic cell corpses observed in etr-1(RNAi) animals. Combined, this data identifies a novel role for ETR-1 in hermaphrodite gametogenesis and in the process of engulfment of germline apoptotic cell corpses.


Asunto(s)
Apoptosis , Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/citología , Caenorhabditis elegans/metabolismo , Células Germinativas/metabolismo , Fagocitosis , Proteínas de Unión al ARN/metabolismo , Animales , Caenorhabditis elegans/ultraestructura , Tamaño de la Célula , Embrión no Mamífero/citología , Embrión no Mamífero/metabolismo , Fertilidad , Eliminación de Gen , Células Germinativas/citología , Células Germinativas/ultraestructura , Gónadas/metabolismo , Organismos Hermafroditas/metabolismo , Mitosis , Oocitos/citología , Ovulación , Fenotipo , Interferencia de ARN , Reproducción
19.
Nucleic Acids Res ; 44(D1): D781-5, 2016 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-26503254

RESUMEN

Developmental systems biology is poised to exploit large-scale data from two approaches: genomics and live imaging. The combination of the two offers the opportunity to map gene functions and gene networks in vivo at single-cell resolution using cell tracking and quantification of cellular phenotypes. Here we present Digital Development (http://www.digital-development.org), a database of cell lineage differentiation with curated phenotypes, cell-specific gene functions and a multiscale model. The database stores data from recent systematic studies of cell lineage differentiation in the C. elegans embryo containing ∼ 200 conserved genes, 1400 perturbed cell lineages and 600,000 digitized single cells. Users can conveniently browse, search and download four categories of phenotypic and functional information from an intuitive web interface. This information includes lineage differentiation phenotypes, cell-specific gene functions, differentiation landscapes and fate choices, and a multiscale model of lineage differentiation. Digital Development provides a comprehensive, curated, multidimensional database for developmental biology. The scale, resolution and richness of biological information presented here facilitate exploration of gene-specific and systems-level mechanisms of lineage differentiation in Metazoans.


Asunto(s)
Caenorhabditis elegans/embriología , Diferenciación Celular , Linaje de la Célula , Bases de Datos Factuales , Animales , Caenorhabditis elegans/citología , Caenorhabditis elegans/genética , Diferenciación Celular/genética , Linaje de la Célula/genética , Modelos Biológicos , Fenotipo
20.
PLoS Genet ; 11(10): e1005520, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26439621

RESUMEN

Mechanisms of adaptation to environmental changes in osmolarity are fundamental for cellular and organismal survival. Here we identify a novel osmotic stress resistance pathway in Caenorhabditis elegans (C. elegans), which is dependent on the metabolic master regulator 5'-AMP-activated protein kinase (AMPK) and its negative regulator Folliculin (FLCN). FLCN-1 is the nematode ortholog of the tumor suppressor FLCN, responsible for the Birt-Hogg-Dubé (BHD) tumor syndrome. We show that flcn-1 mutants exhibit increased resistance to hyperosmotic stress via constitutive AMPK-dependent accumulation of glycogen reserves. Upon hyperosmotic stress exposure, glycogen stores are rapidly degraded, leading to a significant accumulation of the organic osmolyte glycerol through transcriptional upregulation of glycerol-3-phosphate dehydrogenase enzymes (gpdh-1 and gpdh-2). Importantly, the hyperosmotic stress resistance in flcn-1 mutant and wild-type animals is strongly suppressed by loss of AMPK, glycogen synthase, glycogen phosphorylase, or simultaneous loss of gpdh-1 and gpdh-2 enzymes. Our studies show for the first time that animals normally exhibit AMPK-dependent glycogen stores, which can be utilized for rapid adaptation to either energy stress or hyperosmotic stress. Importantly, we show that glycogen accumulates in kidneys from mice lacking FLCN and in renal tumors from a BHD patient. Our findings suggest a dual role for glycogen, acting as a reservoir for energy supply and osmolyte production, and both processes might be supporting tumorigenesis.


Asunto(s)
Proteínas Quinasas Activadas por AMP/genética , Glucógeno/metabolismo , Osmorregulación/genética , Proteínas Proto-Oncogénicas/genética , Proteínas Supresoras de Tumor/genética , Animales , Caenorhabditis elegans/genética , Caenorhabditis elegans/fisiología , Glucógeno/genética , Glucógeno Fosforilasa/genética , Glucógeno Sintasa/genética , Humanos , Ratones , Mutación , Concentración Osmolar
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA