Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
1.
Nature ; 596(7873): 536-542, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34433947

RESUMEN

Tropical forests store 40-50 per cent of terrestrial vegetation carbon1. However, spatial variations in aboveground live tree biomass carbon (AGC) stocks remain poorly understood, in particular in tropical montane forests2. Owing to climatic and soil changes with increasing elevation3, AGC stocks are lower in tropical montane forests compared with lowland forests2. Here we assemble and analyse a dataset of structurally intact old-growth forests (AfriMont) spanning 44 montane sites in 12 African countries. We find that montane sites in the AfriMont plot network have a mean AGC stock of 149.4 megagrams of carbon per hectare (95% confidence interval 137.1-164.2), which is comparable to lowland forests in the African Tropical Rainforest Observation Network4 and about 70 per cent and 32 per cent higher than averages from plot networks in montane2,5,6 and lowland7 forests in the Neotropics, respectively. Notably, our results are two-thirds higher than the Intergovernmental Panel on Climate Change default values for these forests in Africa8. We find that the low stem density and high abundance of large trees of African lowland forests4 is mirrored in the montane forests sampled. This carbon store is endangered: we estimate that 0.8 million hectares of old-growth African montane forest have been lost since 2000. We provide country-specific montane forest AGC stock estimates modelled from our plot network to help to guide forest conservation and reforestation interventions. Our findings highlight the need for conserving these biodiverse9,10 and carbon-rich ecosystems.


Asunto(s)
Actitud , Secuestro de Carbono , Carbono/análisis , Bosque Lluvioso , Árboles/metabolismo , Clima Tropical , África , Biomasa , Cambio Climático , Conservación de los Recursos Naturales , Conjuntos de Datos como Asunto , Mapeo Geográfico
2.
New Phytol ; 243(1): 132-144, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38742309

RESUMEN

Nutrient limitation may constrain the ability of recovering and mature tropical forests to serve as a carbon sink. However, it is unclear to what extent trees can utilize nutrient acquisition strategies - especially root phosphatase enzymes and mycorrhizal symbioses - to overcome low nutrient availability across secondary succession. Using a large-scale, full factorial nitrogen and phosphorus fertilization experiment of 76 plots along a secondary successional gradient in lowland wet tropical forests of Panama, we tested the extent to which root phosphatase enzyme activity and mycorrhizal colonization are flexible, and if investment shifts over succession, reflective of changing nutrient limitation. We also conducted a meta-analysis to test how tropical trees adjust these strategies in response to nutrient additions and across succession. We find that tropical trees are dynamic, adjusting investment in strategies - particularly root phosphatase - in response to changing nutrient conditions through succession. These changes reflect a shift from strong nitrogen to weak phosphorus limitation over succession. Our meta-analysis findings were consistent with our field study; we found more predictable responses of root phosphatase than mycorrhizal colonization to nutrient availability. Our findings suggest that nutrient acquisition strategies respond to nutrient availability and demand in tropical forests, likely critical for alleviating nutrient limitation.


Asunto(s)
Bosques , Micorrizas , Nitrógeno , Nutrientes , Fósforo , Árboles , Clima Tropical , Fósforo/metabolismo , Nitrógeno/metabolismo , Micorrizas/fisiología , Nutrientes/metabolismo , Raíces de Plantas/metabolismo , Raíces de Plantas/microbiología , Monoéster Fosfórico Hidrolasas/metabolismo , Panamá
3.
New Phytol ; 243(3): 1205-1219, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38855965

RESUMEN

Decades of studies have demonstrated links between biodiversity and ecosystem functioning, yet the generality of the relationships and the underlying mechanisms remain unclear, especially for forest ecosystems. Using 11 tree-diversity experiments, we tested tree species richness-community productivity relationships and the role of arbuscular (AM) or ectomycorrhizal (ECM) fungal-associated tree species in these relationships. Tree species richness had a positive effect on community productivity across experiments, modified by the diversity of tree mycorrhizal associations. In communities with both AM and ECM trees, species richness showed positive effects on community productivity, which could have resulted from complementarity between AM and ECM trees. Moreover, both AM and ECM trees were more productive in mixed communities with both AM and ECM trees than in communities assembled by their own mycorrhizal type of trees. In communities containing only ECM trees, species richness had a significant positive effect on productivity, whereas species richness did not show any significant effects on productivity in communities containing only AM trees. Our study provides novel explanations for variations in diversity-productivity relationships by suggesting that tree-mycorrhiza interactions can shape productivity in mixed-species forest ecosystems.


Asunto(s)
Biodiversidad , Micorrizas , Árboles , Micorrizas/fisiología , Árboles/microbiología , Especificidad de la Especie
4.
Glob Chang Biol ; 30(1): e17140, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38273497

RESUMEN

Growing evidence suggests that liana competition with trees is threatening the global carbon sink by slowing the recovery of forests following disturbance. A recent theory based on local and regional evidence further proposes that the competitive success of lianas over trees is driven by interactions between forest disturbance and climate. We present the first global assessment of liana-tree relative performance in response to forest disturbance and climate drivers. Using an unprecedented dataset, we analysed 651 vegetation samples representing 26,538 lianas and 82,802 trees from 556 unique locations worldwide, derived from 83 publications. Results show that lianas perform better relative to trees (increasing liana-to-tree ratio) when forests are disturbed, under warmer temperatures and lower precipitation and towards the tropical lowlands. We also found that lianas can be a critical factor hindering forest recovery in disturbed forests experiencing liana-favourable climates, as chronosequence data show that high competitive success of lianas over trees can persist for decades following disturbances, especially when the annual mean temperature exceeds 27.8°C, precipitation is less than 1614 mm and climatic water deficit is more than 829 mm. These findings reveal that degraded tropical forests with environmental conditions favouring lianas are disproportionately more vulnerable to liana dominance and thus can potentially stall succession, with important implications for the global carbon sink, and hence should be the highest priority to consider for restoration management.


Des preuves de plus en plus nombreuses suggèrent que la competition entre lianes et les arbres menace le puits de carbone mondial en ralentissant la récupération des forêts après une perturbation. Une théorie récente, fondée sur des observations locales et régionales, propose en outre que le succès compétitif des lianes sur les arbres est dû aux interactions entre la perturbation forestière et le climat. Nous présentons la première évaluation mondiale de la performance relative des lianes par rapport aux arbres en réponse aux perturbations forestières et aux facteurs climatiques. En utilisant un ensemble de données sans précédent, nous avons analysé 651 échantillons de végétation représentant 26,538 lianes et 82,802 arbres, issus de 556 emplacements uniques dans le monde entier, tirés de 83 publications. Les résultats montrent que les lianes ont de meilleure performances par rapport aux arbres (augmentation du ratio liane-arbre) lorsque les forêts sont perturbées, sous des zones chaudes aves précipitations faibles, et vers les basses altitudes tropicales. Nous avons également constaté que les lianes peuvent être un facteur critique entravant la récupération des forêts dans les forêts perturbées connaissant des climats favorables aux lianes, car les données de chronoséquence montrent que le succès compétitif élevé des lianes sur les arbres peut persister pendant des décennies après les perturbations, surtout lorsque la température annuelle moyenne dépasse 27.8°C, que les précipitations sont inférieures à 1614 mm et que le déficit hydrique climatique est supérieur à 829 mm. Ces découvertes révèlent que les forêts tropicales dégradées avec des conditions environnementales favorables aux lianes sont disproportionnellement plus vulnérables à la dominance des lianes, et peuvent ainsi potentiellement entraver la succession, avec d'importantes implications pour le puits de carbone mondial et devraient donc être la plus haute priorité à considérer pour la gestion de la restauration.


Asunto(s)
Árboles , Clima Tropical , Árboles/fisiología , Bosques , Secuestro de Carbono , Agua
5.
Proc Natl Acad Sci U S A ; 118(11)2021 03 16.
Artículo en Inglés | MEDLINE | ID: mdl-33836596

RESUMEN

Legume trees form an abundant and functionally important component of tropical forests worldwide with N2-fixing symbioses linked to enhanced growth and recruitment in early secondary succession. However, it remains unclear how N2-fixers meet the high demands for inorganic nutrients imposed by rapid biomass accumulation on nutrient-poor tropical soils. Here, we show that N2-fixing trees in secondary Neotropical forests triggered twofold higher in situ weathering of fresh primary silicates compared to non-N2-fixing trees and induced locally enhanced nutrient cycling by the soil microbiome community. Shotgun metagenomic data from weathered minerals support the role of enhanced nitrogen and carbon cycling in increasing acidity and weathering. Metagenomic and marker gene analyses further revealed increased microbial potential beneath N2-fixers for anaerobic iron reduction, a process regulating the pool of phosphorus bound to iron-bearing soil minerals. We find that the Fe(III)-reducing gene pool in soil is dominated by acidophilic Acidobacteria, including a highly abundant genus of previously undescribed bacteria, Candidatus Acidoferrum, genus novus. The resulting dependence of the Fe-cycling gene pool to pH determines the high iron-reducing potential encoded in the metagenome of the more acidic soils of N2-fixers and their nonfixing neighbors. We infer that by promoting the activities of a specialized local microbiome through changes in soil pH and C:N ratios, N2-fixing trees can influence the wider biogeochemical functioning of tropical forest ecosystems in a manner that enhances their ability to assimilate and store atmospheric carbon.


Asunto(s)
Fabaceae/microbiología , Bosques , Microbiota/fisiología , Minerales/metabolismo , Nutrientes/metabolismo , Clima Tropical , Acidobacteria/clasificación , Acidobacteria/genética , Acidobacteria/metabolismo , Biomasa , Carbono/análisis , Fabaceae/crecimiento & desarrollo , Fabaceae/metabolismo , Compuestos Férricos/metabolismo , Concentración de Iones de Hidrógeno , Microbiota/genética , Minerales/análisis , Nitrógeno/análisis , Nitrógeno/metabolismo , Fijación del Nitrógeno , Nutrientes/análisis , Panamá , Fósforo/metabolismo , Silicatos/análisis , Silicatos/metabolismo , Suelo/química , Microbiología del Suelo , Simbiosis , Árboles/crecimiento & desarrollo , Árboles/metabolismo , Árboles/microbiología
6.
Proc Natl Acad Sci U S A ; 118(21)2021 05 25.
Artículo en Inglés | MEDLINE | ID: mdl-34001597

RESUMEN

The responses of tropical forests to environmental change are critical uncertainties in predicting the future impacts of climate change. The positive phase of the 2015-2016 El Niño Southern Oscillation resulted in unprecedented heat and low precipitation in the tropics with substantial impacts on the global carbon cycle. The role of African tropical forests is uncertain as their responses to short-term drought and temperature anomalies have yet to be determined using on-the-ground measurements. African tropical forests may be particularly sensitive because they exist in relatively dry conditions compared with Amazonian or Asian forests, or they may be more resistant because of an abundance of drought-adapted species. Here, we report responses of structurally intact old-growth lowland tropical forests inventoried within the African Tropical Rainforest Observatory Network (AfriTRON). We use 100 long-term inventory plots from six countries each measured at least twice prior to and once following the 2015-2016 El Niño event. These plots experienced the highest temperatures and driest conditions on record. The record temperature did not significantly reduce carbon gains from tree growth or significantly increase carbon losses from tree mortality, but the record drought did significantly decrease net carbon uptake. Overall, the long-term biomass increase of these forests was reduced due to the El Niño event, but these plots remained a live biomass carbon sink (0.51 ± 0.40 Mg C ha-1 y-1) despite extreme environmental conditions. Our analyses, while limited to African tropical forests, suggest they may be more resistant to climatic extremes than Amazonian and Asian forests.


Asunto(s)
Cambio Climático , Bosque Lluvioso , Árboles/crecimiento & desarrollo , Clima Tropical , Ciclo del Carbono , Sequías , El Niño Oscilación del Sur , Calor , Humanos , Estaciones del Año
7.
Proc Natl Acad Sci U S A ; 118(49)2021 12 07.
Artículo en Inglés | MEDLINE | ID: mdl-34845017

RESUMEN

One-third of all Neotropical forests are secondary forests that regrow naturally after agricultural use through secondary succession. We need to understand better how and why succession varies across environmental gradients and broad geographic scales. Here, we analyze functional recovery using community data on seven plant characteristics (traits) of 1,016 forest plots from 30 chronosequence sites across the Neotropics. By analyzing communities in terms of their traits, we enhance understanding of the mechanisms of succession, assess ecosystem recovery, and use these insights to propose successful forest restoration strategies. Wet and dry forests diverged markedly for several traits that increase growth rate in wet forests but come at the expense of reduced drought tolerance, delay, or avoidance, which is important in seasonally dry forests. Dry and wet forests showed different successional pathways for several traits. In dry forests, species turnover is driven by drought tolerance traits that are important early in succession and in wet forests by shade tolerance traits that are important later in succession. In both forests, deciduous and compound-leaved trees decreased with forest age, probably because microclimatic conditions became less hot and dry. Our results suggest that climatic water availability drives functional recovery by influencing the start and trajectory of succession, resulting in a convergence of community trait values with forest age when vegetation cover builds up. Within plots, the range in functional trait values increased with age. Based on the observed successional trait changes, we indicate the consequences for carbon and nutrient cycling and propose an ecologically sound strategy to improve forest restoration success.


Asunto(s)
Conservación de los Recursos Naturales , Bosques , Modelos Biológicos , Clima Tropical
8.
Glob Chang Biol ; 28(17): 5254-5268, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35703577

RESUMEN

Data capturing multiple axes of tree size and shape, such as a tree's stem diameter, height and crown size, underpin a wide range of ecological research-from developing and testing theory on forest structure and dynamics, to estimating forest carbon stocks and their uncertainties, and integrating remote sensing imagery into forest monitoring programmes. However, these data can be surprisingly hard to come by, particularly for certain regions of the world and for specific taxonomic groups, posing a real barrier to progress in these fields. To overcome this challenge, we developed the Tallo database, a collection of 498,838 georeferenced and taxonomically standardized records of individual trees for which stem diameter, height and/or crown radius have been measured. These data were collected at 61,856 globally distributed sites, spanning all major forested and non-forested biomes. The majority of trees in the database are identified to species (88%), and collectively Tallo includes data for 5163 species distributed across 1453 genera and 187 plant families. The database is publicly archived under a CC-BY 4.0 licence and can be access from: https://doi.org/10.5281/zenodo.6637599. To demonstrate its value, here we present three case studies that highlight how the Tallo database can be used to address a range of theoretical and applied questions in ecology-from testing the predictions of metabolic scaling theory, to exploring the limits of tree allometric plasticity along environmental gradients and modelling global variation in maximum attainable tree height. In doing so, we provide a key resource for field ecologists, remote sensing researchers and the modelling community working together to better understand the role that trees play in regulating the terrestrial carbon cycle.


Asunto(s)
Bosques , Árboles , Biomasa , Carbono/metabolismo , Ciclo del Carbono , Ecosistema , Árboles/fisiología
9.
Ecol Appl ; 32(5): e2585, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35333420

RESUMEN

Predicting forest recovery at landscape scales will aid forest restoration efforts. The first step in successful forest recovery is tree recruitment. Forecasts of tree recruit abundance, derived from the landscape-scale distribution of seed sources (i.e., adult trees), could assist efforts to identify sites with high potential for natural regeneration. However, previous work revealed wide variation in the effect of seed sources on seedling abundance, from positive to no effect. We quantified the relationship between adult tree seed sources and tree recruits and predicted where natural recruitment would occur in a fragmented, tropical, agricultural landscape. We integrated species-specific tree crown maps generated from hyperspectral imagery and property ownership data with field data on the spatial distribution of tree recruits from five species. We then developed hierarchical Bayesian models to predict landscape-scale recruit abundance. Our models revealed that species-specific maps of tree crowns improved recruit abundance predictions. Conspecific crown area had a much stronger impact on recruitment abundance (8.00% increase in recruit abundance when conspecific tree density increases from zero to one tree; 95% credible interval (CI): 0.80% to 11.57%) than heterospecific crown area (0.03% increase with the addition of a single heterospecific tree, 95% CI: -0.60% to 0.68%). Individual property ownership was also an important predictor of recruit abundance: The best performing model had varying effects of conspecific and heterospecific crown area on recruit abundance, depending on individual property ownership. We demonstrate how novel remote sensing approaches and cadastral data can be used to generate high-resolution and landscape-level maps of tree recruit abundance. Spatial models parameterized with field, cadastral, and remote sensing data are poised to assist decision support for forest landscape restoration.


Asunto(s)
Bosques , Semillas , Teorema de Bayes , Plantones , Especificidad de la Especie , Clima Tropical
10.
Nature ; 530(7589): 211-4, 2016 02 11.
Artículo en Inglés | MEDLINE | ID: mdl-26840632

RESUMEN

Land-use change occurs nowhere more rapidly than in the tropics, where the imbalance between deforestation and forest regrowth has large consequences for the global carbon cycle. However, considerable uncertainty remains about the rate of biomass recovery in secondary forests, and how these rates are influenced by climate, landscape, and prior land use. Here we analyse aboveground biomass recovery during secondary succession in 45 forest sites and about 1,500 forest plots covering the major environmental gradients in the Neotropics. The studied secondary forests are highly productive and resilient. Aboveground biomass recovery after 20 years was on average 122 megagrams per hectare (Mg ha(-1)), corresponding to a net carbon uptake of 3.05 Mg C ha(-1) yr(-1), 11 times the uptake rate of old-growth forests. Aboveground biomass stocks took a median time of 66 years to recover to 90% of old-growth values. Aboveground biomass recovery after 20 years varied 11.3-fold (from 20 to 225 Mg ha(-1)) across sites, and this recovery increased with water availability (higher local rainfall and lower climatic water deficit). We present a biomass recovery map of Latin America, which illustrates geographical and climatic variation in carbon sequestration potential during forest regrowth. The map will support policies to minimize forest loss in areas where biomass resilience is naturally low (such as seasonally dry forest regions) and promote forest regeneration and restoration in humid tropical lowland areas with high biomass resilience.


Asunto(s)
Biomasa , Bosques , Árboles/crecimiento & desarrollo , Clima Tropical , Carbono/metabolismo , Ciclo del Carbono , Secuestro de Carbono , Ecología , Humedad , América Latina , Lluvia , Factores de Tiempo , Árboles/metabolismo
11.
Proc Natl Acad Sci U S A ; 116(12): 5254-5261, 2019 03 19.
Artículo en Inglés | MEDLINE | ID: mdl-30617080

RESUMEN

Conventional markets can underprovide ecosystem services. Deliberate creation of a market for ecosystem services [e.g., a payments for ecosystem services (PES) scheme] can close the gap. The new ecosystem service market alters behaviors and quantities of ecosystem service provided and reveals prices for the ecosystems service: a market-clearing equilibrium. Assessing the potential for PES programs, which often act as ecological infrastructure investment mechanisms, requires forecasting the market-clearing equilibrium. Forecasting the equilibrium is complicated, especially at relevant social and ecological scales. It requires greater disciplinary integration than valuing ecosystem services or computing the marginal cost of making a land-use change to produce a service. We conduct an ex ante benefit-cost assessment and forecast market-clearing prices and quantities for ecological infrastructure investment contracts in the Panama Canal Watershed. The Panama Canal Authority could offer contracts to private farmers to change land use to increase dry-season water flow and reduce sedimentation. A feasible voluntary contracting system yields a small program of about 1,840 ha of land conversion in a 279,000-ha watershed and generates a 4.9 benefit-cost ratio. Physical and social constraints limit market supply and scalability. Service delays, caused by lags between the time payments must be made and the time services stemming from ecosystem change are realized, hinder program feasibility. Targeting opportunities raise the benefit-cost ratio but reduce the hectares likely to be converted. We compare and contrast our results with prior state-of-the-art assessments on this system.


Asunto(s)
Conservación de los Recursos Naturales/economía , Ecología/economía , Inversiones en Salud/economía , Análisis Costo-Beneficio/economía , Ecosistema , Panamá
12.
Ecol Lett ; 24(9): 1776-1787, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34170613

RESUMEN

Identifying generalisable processes that underpin population dynamics is crucial for understanding successional patterns. While longitudinal or chronosequence data are powerful tools for doing so, the traditional focus on community-level shifts in taxonomic and functional composition rather than species-level trait-demography relationships has made generalisation difficult. Using joint species distribution models, we demonstrate how three traits-photosynthetic rate, adult stature, and seed mass-moderate recruitment and sapling mortality rates of 46 woody species during secondary succession. We show that the pioneer syndrome emerges from higher photosynthetic rates, shorter adult statures and lighter seeds that facilitate exploitation of light in younger secondary forests, while 'long-lived pioneer' and 'late successional' syndromes are associated with trait values that enable species to persist in the understory or reach the upper canopy in older secondary forests. Our study highlights the context dependency of trait-demography relationships, which drive successional shifts in sapling's species composition in secondary forests.


Asunto(s)
Árboles , Clima Tropical , Bosques , Dinámica Poblacional , Síndrome
13.
Oecologia ; 195(4): 1019-1029, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33675408

RESUMEN

Young successional tropical forests are crucial in the global carbon cycle because they can quickly sequester large quantities of atmospheric carbon. However, lianas (woody vines) can significantly decrease biomass accumulation in young regenerating forests. Lianas are abundant in tropical dry forests, and thus we hypothesized that lianas reduce biomass accretion in dry forests. Lianas may be particularly detrimental to the growth of young trees, which are vulnerable to competition from lianas. Alternatively, lianas may have a stronger negative effect on the largest trees because lianas seek the high-light environment at the top of the forest canopy. We tested these hypotheses using a liana-removal experiment in 13 dry forest stands that ranged from 1 to 70 years in southwestern Panama. We measured biomass accumulation annually for more than 10,000 stems from 2013 to 2017. Contrary to our expectations, liana removal had no effect on tree biomass accumulation across our successional forests and throughout our study period. Liana removal did not benefit smaller trees or larger trees. Lianas did not increase biomass accumulation on recruits, and did not increase biomass loss due to mortality. Surprisingly, removing lianas had a negative effect on three out of 41 tree species. Lianas had no effect on biomass accumulation and loss, possibly because: (1) trees allocated resources to roots instead of stems, (2) trees and lianas partitioned water, (3) higher irradiance after liana removal reduced soil moisture, or (4) low water availability might have been such a strong stressor that it reduced plant-plant competition.


Asunto(s)
Árboles , Clima Tropical , Biomasa , Bosques , Panamá
14.
Nature ; 502(7470): 224-7, 2013 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-24037375

RESUMEN

Forests contribute a significant portion of the land carbon sink, but their ability to sequester CO2 may be constrained by nitrogen, a major plant-limiting nutrient. Many tropical forests possess tree species capable of fixing atmospheric dinitrogen (N2), but it is unclear whether this functional group can supply the nitrogen needed as forests recover from disturbance or previous land use, or expand in response to rising CO2 (refs 6, 8). Here we identify a powerful feedback mechanism in which N2 fixation can overcome ecosystem-scale deficiencies in nitrogen that emerge during periods of rapid biomass accumulation in tropical forests. Over a 300-year chronosequence in Panama, N2-fixing tree species accumulated carbon up to nine times faster per individual than their non-fixing neighbours (greatest difference in youngest forests), and showed species-specific differences in the amount and timing of fixation. As a result of fast growth and high fixation, fixers provided a large fraction of the nitrogen needed to support net forest growth (50,000 kg carbon per hectare) in the first 12 years. A key element of ecosystem functional diversity was ensured by the presence of different N2-fixing tree species across the entire forest age sequence. These findings show that symbiotic N2 fixation can have a central role in nitrogen cycling during tropical forest stand development, with potentially important implications for the ability of tropical forests to sequester CO2.


Asunto(s)
Ecosistema , Fijación del Nitrógeno/fisiología , Simbiosis/fisiología , Árboles/metabolismo , Clima Tropical , Dióxido de Carbono/metabolismo , Panamá , Especificidad de la Especie , Árboles/crecimiento & desarrollo
15.
Ecol Lett ; 21(10): 1486-1495, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-30073753

RESUMEN

A fundamental biogeochemical paradox is that nitrogen-rich tropical forests contain abundant nitrogen-fixing trees, which support a globally significant tropical carbon sink. One explanation for this pattern holds that nitrogen-fixing trees can overcome phosphorus limitation in tropical forests by synthesizing phosphatase enzymes to acquire soil organic phosphorus, but empirical evidence remains scarce. We evaluated whether nitrogen fixation and phosphatase activity are linked across 97 trees from seven species, and tested two hypotheses for explaining investment in nutrient strategies: trading nitrogen-for-phosphorus or balancing nutrient demand. Both strategies varied across species but were not explained by nitrogen-for-phosphorus trading or nutrient balance. This indicates that (1) studies of these nutrient strategies require broad sampling within and across species, (2) factors other than nutrient trading must be invoked to resolve the paradox of tropical nitrogen fixation, and (3) nitrogen-fixing trees cannot provide a positive nitrogen-phosphorus-carbon feedback to alleviate nutrient limitation of the tropical carbon sink.


Asunto(s)
Fijación del Nitrógeno , Bosque Lluvioso , Árboles , Nitrógeno , Nutrientes , Monoéster Fosfórico Hidrolasas , Fósforo , Suelo , Especificidad de la Especie , Clima Tropical
16.
New Phytol ; 219(3): 885-899, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29504138

RESUMEN

Tropical forests are increasingly being subjected to hotter, drier conditions as a result of global climate change. The effects of drought on forests along successional gradients remain poorly understood. We took advantage of the 2015-2016 El Niño event to test for differences in drought response along a successional gradient by measuring the sap flow in 76 trees, representing 42 different species, in 8-, 25- and 80-yr-old secondary forests in the 15-km2 'Agua Salud Project' study area, located in central Panama. Average sap velocities and sapwood-specific hydraulic conductivities were highest in the youngest forest. During the dry season drought, sap velocities increased significantly in the 80-yr-old forest as a result of higher evaporative demand, but not in younger forests. The main drivers of transpiration shifted from radiation to vapor pressure deficit with progressing forest succession. Soil volumetric water content was a limiting factor only in the youngest forest during the dry season, probably as a result of less root exploration in the soil. Trees in early-successional forests displayed stronger signs of regulatory responses to the 2015-2016 El Niño drought, and the limiting physiological processes for transpiration shifted from operating at the plant-soil interface to the plant-atmosphere interface with progressing forest succession.


Asunto(s)
Sequías , El Niño Oscilación del Sur , Bosques , Plantas/metabolismo , Análisis de Varianza , Ritmo Circadiano/fisiología , Modelos Lineales , Panamá , Hojas de la Planta/fisiología , Estaciones del Año , Suelo , Factores de Tiempo , Presión de Vapor , Agua
17.
Ecology ; 98(4): 1062-1070, 2017 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-28072458

RESUMEN

Secondary forests are important carbon sinks, but their biomass dynamics vary markedly within and across landscapes. The biotic and abiotic drivers of this variation are still not well understood. We tested the effects of soil resource availability and competition by lianas on the biomass dynamics of young secondary tropical forests in Panama and assessed the extent to which liana effects were mediated by soil resource availability. Over a five-year period, growth, mortality, and recruitment of woody plants of ≥1 cm diameter were monitored in 84 plots in 3-30-year-old secondary forests across the Agua Salud site in central Panama. Biomass dynamics and the effects of lianas and soil resources were examined using (generalized) linear mixed-effect models and a model averaging approach. There was strong spatial and temporal variation in liana biomass within and across the plots. The relative biomass of lianas had a strong negative effect on overall tree growth, growth of understory trees decreased with soil fertility and dry season soil water content, and the effect of lianas on tree mortality varied with soil fertility. Tree recruitment was not associated with any of the predictor variables. Our model indicates that tree biomass growth across our landscape was reduced with 22% due to competition with lianas, and that the effect of lianas increased during succession, from 19% after five years to 32% after 30 years. The projected liana-induced growth reduction after 60 years was 47%, which was consistent with data from a nearby site. Our study shows that the observed liana proliferation across tropical forests may reduce the sequestration and storage of carbon in young secondary forests, with important implications for the carbon balance of tropical forest landscapes and consequently for global climate change. Our study highlights the need to incorporate lianas and soil variables in research on the biomass dynamics of secondary forest across tropical landscapes, and the need for well-replicated longitudinal studies to cover landscape-level variability in the relevant abiotic and biotic components.


Asunto(s)
Biomasa , Bosques , Panamá , Dinámica Poblacional , Árboles , Clima Tropical
18.
Ecol Appl ; 26(8): 2367-2373, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-27907255

RESUMEN

Remote sensing is increasingly needed to meet the critical demand for estimates of forest structure and composition at landscape to continental scales. Hyperspectral images can detect tree canopy properties, including species identity, leaf chemistry and disease. Tree growth rates are related to these measurable canopy properties but whether growth can be directly predicted from hyperspectral data remains unknown. We used a single hyperspectral image and light detection and ranging-derived elevation to predict growth rates for 20 tropical tree species planted in experimental plots. We asked whether a consistent relationship between spectral data and growth rates exists across all species and which spectral regions, associated with different canopy chemical and structural properties, are important for predicting growth rates. We found that a linear combination of narrowband indices and elevation is correlated with standardized growth rates across all 20 tree species (R2  = 53.70%). Although wavelengths from the entire visible-to-shortwave infrared spectrum were involved in our analysis, results point to relatively greater importance of visible and near-infrared regions for relating canopy reflectance to tree growth data. Overall, we demonstrate the potential for hyperspectral data to quantify tree demography over a much larger area than possible with field-based methods in forest inventory plots.


Asunto(s)
Bosques , Árboles , Clima Tropical , Demografía , Hojas de la Planta
19.
Oecologia ; 179(1): 293-305, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25990298

RESUMEN

Adaptations to resource availability strongly shape patterns of community composition along successional gradients in environmental conditions. In the present study, we examined the extent to which variation in functional composition explains shifts in trait-based functional strategies in young tropical secondary forests during the most dynamic stage of succession (0-20 years). Functional composition of two size classes in 51 secondary forest plots was determined using community-weighted means of seven functional traits, which were intensively measured on 55 woody plant species (n = 875-1,761 individuals). Along the successional gradient in forest structure, there was a significant and consistent shift in functional strategies from resource acquisition to resource conservation. Leaf toughness and adult plant size increased significantly, while net photosynthetic capacity (A(mass)) decreased significantly during succession. Shifts in functional strategies within size classes for A(mass) and wood density also support the hypothesis that changes in functional composition are shaped by environmental conditions along successional gradients. In general, 'hard' functional traits, e.g., A(mass) and leaf toughness, linked to different facets of plant performance exhibited greater sensitivity to successional changes in forest structure than 'soft' traits, such as leaf mass area and leaf dry matter content. Our results also suggested that stochastic processes related to previous land-use history, dispersal limitation, and abiotic factors explained variation in functional composition beyond that attributed to deterministic shifts in functional strategies. Further data on seed dispersal vectors and distance and landscape configuration are needed to improve current mechanistic models of succession in tropical secondary forests.


Asunto(s)
Adaptación Biológica , Bosques , Fotosíntesis , Árboles/crecimiento & desarrollo , Clima Tropical , Humanos , Panamá , Fotosíntesis/fisiología , Hojas de la Planta/crecimiento & desarrollo , Hojas de la Planta/fisiología , Árboles/fisiología
20.
Biol Rev Camb Philos Soc ; 99(3): 928-949, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38226776

RESUMEN

The core principle shared by most theories and models of succession is that, following a major disturbance, plant-environment feedback dynamics drive a directional change in the plant community. The most commonly studied feedback loops are those in which the regrowth of the plant community causes changes to the abiotic (e.g. soil nutrients) or biotic (e.g. dispersers) environment, which differentially affect species availability or performance. This, in turn, leads to shifts in the species composition of the plant community. However, there are many other PE feedback loops that potentially drive succession, each of which can be considered a model of succession. While plant-environment feedback loops in principle generate predictable successional trajectories, succession is generally observed to be highly variable. Factors contributing to this variability are the stochastic processes involved in feedback dynamics, such as individual mortality and seed dispersal, and extrinsic causes of succession, which are not affected by changes in the plant community but do affect species performance or availability. Both can lead to variation in the identity of dominant species within communities. This, in turn, leads to further contingencies if these species differ in their effect on their environment (priority effects). Predictability and variability are thus intrinsically linked features of ecological succession. We present a new conceptual framework of ecological succession that integrates the propositions discussed above. This framework defines seven general causes: landscape context, disturbance and land-use, biotic factors, abiotic factors, species availability, species performance, and the plant community. When involved in a feedback loop, these general causes drive succession and when not, they are extrinsic causes that create variability in successional trajectories and dynamics. The proposed framework provides a guide for linking these general causes into causal pathways that represent specific models of succession. Our framework represents a systematic approach to identifying the main feedback processes and causes of variation at different successional stages. It can be used for systematic comparisons among study sites and along environmental gradients, to conceptualise studies, and to guide the formulation of research questions and design of field studies. Mapping an extensive field study onto our conceptual framework revealed that the pathways representing the study's empirical outcomes and conceptual model had important differences, underlining the need to move beyond the conceptual models that currently dominate in specific fields and to find ways to examine the importance of and interactions among alternative causal pathways of succession. To further this aim, we argue for integrating long-term studies across environmental and anthropogenic gradients, combined with controlled experiments and dynamic modelling.


Asunto(s)
Ecosistema , Plantas , Modelos Biológicos , Desarrollo de la Planta/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA