Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Nature ; 628(8006): 130-138, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38448586

RESUMEN

Genome-wide association analyses using high-throughput metabolomics platforms have led to novel insights into the biology of human metabolism1-7. This detailed knowledge of the genetic determinants of systemic metabolism has been pivotal for uncovering how genetic pathways influence biological mechanisms and complex diseases8-11. Here we present a genome-wide association study for 233 circulating metabolic traits quantified by nuclear magnetic resonance spectroscopy in up to 136,016 participants from 33 cohorts. We identify more than 400 independent loci and assign probable causal genes at two-thirds of these using manual curation of plausible biological candidates. We highlight the importance of sample and participant characteristics that can have significant effects on genetic associations. We use detailed metabolic profiling of lipoprotein- and lipid-associated variants to better characterize how known lipid loci and novel loci affect lipoprotein metabolism at a granular level. We demonstrate the translational utility of comprehensively phenotyped molecular data, characterizing the metabolic associations of intrahepatic cholestasis of pregnancy. Finally, we observe substantial genetic pleiotropy for multiple metabolic pathways and illustrate the importance of careful instrument selection in Mendelian randomization analysis, revealing a putative causal relationship between acetone and hypertension. Our publicly available results provide a foundational resource for the community to examine the role of metabolism across diverse diseases.


Asunto(s)
Biomarcadores , Estudio de Asociación del Genoma Completo , Metabolómica , Femenino , Humanos , Embarazo , Acetona/sangre , Acetona/metabolismo , Biomarcadores/sangre , Biomarcadores/metabolismo , Colestasis Intrahepática/sangre , Colestasis Intrahepática/genética , Colestasis Intrahepática/metabolismo , Estudios de Cohortes , Estudio de Asociación del Genoma Completo/métodos , Hipertensión/sangre , Hipertensión/genética , Hipertensión/metabolismo , Lipoproteínas/genética , Lipoproteínas/metabolismo , Espectroscopía de Resonancia Magnética , Análisis de la Aleatorización Mendeliana , Redes y Vías Metabólicas/genética , Fenotipo , Polimorfismo de Nucleótido Simple/genética , Complicaciones del Embarazo/sangre , Complicaciones del Embarazo/genética , Complicaciones del Embarazo/metabolismo
2.
PLoS Med ; 18(9): e1003786, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34543281

RESUMEN

BACKGROUND: Excess bodyweight and related metabolic perturbations have been implicated in kidney cancer aetiology, but the specific molecular mechanisms underlying these relationships are poorly understood. In this study, we sought to identify circulating metabolites that predispose kidney cancer and to evaluate the extent to which they are influenced by body mass index (BMI). METHODS AND FINDINGS: We assessed the association between circulating levels of 1,416 metabolites and incident kidney cancer using pre-diagnostic blood samples from up to 1,305 kidney cancer case-control pairs from 5 prospective cohort studies. Cases were diagnosed on average 8 years after blood collection. We found 25 metabolites robustly associated with kidney cancer risk. In particular, 14 glycerophospholipids (GPLs) were inversely associated with risk, including 8 phosphatidylcholines (PCs) and 2 plasmalogens. The PC with the strongest association was PC ae C34:3 with an odds ratio (OR) for 1 standard deviation (SD) increment of 0.75 (95% confidence interval [CI]: 0.68 to 0.83, p = 2.6 × 10-8). In contrast, 4 amino acids, including glutamate (OR for 1 SD = 1.39, 95% CI: 1.20 to 1.60, p = 1.6 × 10-5), were positively associated with risk. Adjusting for BMI partly attenuated the risk association for some-but not all-metabolites, whereas other known risk factors of kidney cancer, such as smoking and alcohol consumption, had minimal impact on the observed associations. A mendelian randomisation (MR) analysis of the influence of BMI on the blood metabolome highlighted that some metabolites associated with kidney cancer risk are influenced by BMI. Specifically, elevated BMI appeared to decrease levels of several GPLs that were also found inversely associated with kidney cancer risk (e.g., -0.17 SD change [ßBMI] in 1-(1-enyl-palmitoyl)-2-linoleoyl-GPC (P-16:0/18:2) levels per SD change in BMI, p = 3.4 × 10-5). BMI was also associated with increased levels of glutamate (ßBMI: 0.12, p = 1.5 × 10-3). While our results were robust across the participating studies, they were limited to study participants of European descent, and it will, therefore, be important to evaluate if our findings can be generalised to populations with different genetic backgrounds. CONCLUSIONS: This study suggests a potentially important role of the blood metabolome in kidney cancer aetiology by highlighting a wide range of metabolites associated with the risk of developing kidney cancer and the extent to which changes in levels of these metabolites are driven by BMI-the principal modifiable risk factor of kidney cancer.


Asunto(s)
Índice de Masa Corporal , Neoplasias Renales/sangre , Metaboloma , Obesidad/sangre , Anciano , Biomarcadores/sangre , Estudios de Casos y Controles , Europa (Continente)/epidemiología , Femenino , Humanos , Incidencia , Neoplasias Renales/diagnóstico , Neoplasias Renales/epidemiología , Neoplasias Renales/genética , Masculino , Análisis de la Aleatorización Mendeliana , Metabolómica , Persona de Mediana Edad , Obesidad/diagnóstico , Obesidad/epidemiología , Obesidad/genética , Estudios Prospectivos , Medición de Riesgo , Factores de Riesgo , Victoria/epidemiología
4.
PLoS Genet ; 13(4): e1006528, 2017 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-28448500

RESUMEN

Physical activity (PA) may modify the genetic effects that give rise to increased risk of obesity. To identify adiposity loci whose effects are modified by PA, we performed genome-wide interaction meta-analyses of BMI and BMI-adjusted waist circumference and waist-hip ratio from up to 200,452 adults of European (n = 180,423) or other ancestry (n = 20,029). We standardized PA by categorizing it into a dichotomous variable where, on average, 23% of participants were categorized as inactive and 77% as physically active. While we replicate the interaction with PA for the strongest known obesity-risk locus in the FTO gene, of which the effect is attenuated by ~30% in physically active individuals compared to inactive individuals, we do not identify additional loci that are sensitive to PA. In additional genome-wide meta-analyses adjusting for PA and interaction with PA, we identify 11 novel adiposity loci, suggesting that accounting for PA or other environmental factors that contribute to variation in adiposity may facilitate gene discovery.


Asunto(s)
Adiposidad/genética , Dioxigenasa FTO Dependiente de Alfa-Cetoglutarato/genética , Ejercicio Físico , Obesidad/genética , Adiposidad/fisiología , Índice de Masa Corporal , Epigenómica , Femenino , Predisposición Genética a la Enfermedad , Estudio de Asociación del Genoma Completo , Genotipo , Humanos , Masculino , Obesidad/fisiopatología , Circunferencia de la Cintura , Relación Cintura-Cadera
5.
BMC Bioinformatics ; 20(1): 22, 2019 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-30634901

RESUMEN

BACKGROUND: Selection of interesting regions from genome wide association studies (GWAS) is typically performed by eyeballing of Manhattan Plots. This is no longer possible with thousands of different phenotypes. There is a need for tools that can automatically detect genomic regions that correspond to what the experienced researcher perceives as peaks worthwhile of further study. RESULTS: We developed Manhattan Harvester, a tool designed for "peak extraction" from GWAS summary files and computation of parameters characterizing various aspects of individual peaks. We present the algorithms used and a model for creating a general quality score that evaluates peaks similarly to that of a human researcher. Our tool Cropper utilizes a graphical interface for inspecting, cropping and subsetting Manhattan Plot regions. Cropper is used to validate and visualize the regions detected by Manhattan Harvester. CONCLUSIONS: We conclude that our tools fill the current void in automatically screening large number of GWAS output files in batch mode. The interesting regions are detected and quantified by various parameters by Manhattan Harvester. Cropper offers graphical tools for in-depth inspection of the regions. The tools are open source and freely available.


Asunto(s)
Gráficos por Computador , Interpretación Estadística de Datos , Minería de Datos/métodos , Estudio de Asociación del Genoma Completo/estadística & datos numéricos , Genómica/métodos , Programas Informáticos , Humanos , Fenotipo , Polimorfismo de Nucleótido Simple
6.
Am J Nephrol ; 49(3): 193-202, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30808845

RESUMEN

BACKGROUND: Serum urea level is a heritable trait, commonly used as a diagnostic marker for kidney function. Genome-wide association studies (GWAS) in East-Asian populations identified a number of genetic loci related to serum urea, however there is a paucity of data for European populations. METHODS: We performed a two-stage meta-analysis of GWASs on serum urea in 13,312 participants, with independent replication in 7,379 participants of European ancestry. RESULTS: We identified 6 genome-wide significant single nucleotide polymorphisms (SNPs) in or near 6 loci, of which 2 were novel (POU2AF1 and ADAMTS9-AS2). Replication of East-Asian and Scottish data provided evidence for an additional 8 loci. SNPs tag regions previously associated with anthropometric traits, serum magnesium, and urinary albumin-to-creatinine ratio, as well as expression quantitative trait loci for genes preferentially expressed in kidney and gastro-intestinal tissues. CONCLUSIONS: Our findings provide insights into the genetic underpinnings of urea metabolism, with potential relevance to kidney function.


Asunto(s)
Riñón/metabolismo , Sitios de Carácter Cuantitativo , Urea/sangre , Población Blanca/genética , Biología Computacional , Estudio de Asociación del Genoma Completo , Humanos , Redes y Vías Metabólicas/genética , Polimorfismo de Nucleótido Simple , Valores de Referencia , Urea/metabolismo
7.
Alzheimers Dement ; 14(6): 707-722, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29316447

RESUMEN

INTRODUCTION: Identifying circulating metabolites that are associated with cognition and dementia may improve our understanding of the pathogenesis of dementia and provide crucial readouts for preventive and therapeutic interventions. METHODS: We studied 299 metabolites in relation to cognition (general cognitive ability) in two discovery cohorts (N total = 5658). Metabolites significantly associated with cognition after adjusting for multiple testing were replicated in four independent cohorts (N total = 6652), and the associations with dementia and Alzheimer's disease (N = 25,872) and lifestyle factors (N = 5168) were examined. RESULTS: We discovered and replicated 15 metabolites associated with cognition including subfractions of high-density lipoprotein, docosahexaenoic acid, ornithine, glutamine, and glycoprotein acetyls. These associations were independent of classical risk factors including high-density lipoprotein cholesterol, low-density lipoprotein cholesterol, triglycerides, glucose, and apolipoprotein E (APOE) genotypes. Six of the cognition-associated metabolites were related to the risk of dementia and lifestyle factors. DISCUSSION: Circulating metabolites were consistently associated with cognition, dementia, and lifestyle factors, opening new avenues for prevention of cognitive decline and dementia.


Asunto(s)
Biomarcadores/metabolismo , Disfunción Cognitiva/metabolismo , Demencia/metabolismo , Adulto , Anciano , Enfermedad de Alzheimer/metabolismo , Estudios de Cohortes , Femenino , Humanos , Estilo de Vida , Masculino , Persona de Mediana Edad , Reproducibilidad de los Resultados , Factores de Riesgo
8.
Brief Bioinform ; 16(1): 39-44, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24008273

RESUMEN

UNLABELLED: Genome-wide association studies are becoming computationally more demanding with the growing amounts of data. Combinatorial traits can increase the data dimensions beyond the computational capabilities of the current tools. We addressed this issue by creating an application for quick association analysis that is ten to hundreds of times faster than the leading fast methods. Our tool (RegScan) is designed for performing basic linear regression analysis with continuous traits maximally fast on large data sets. RegScan specifically targets association analysis of combinatorial traits in metabolomics. It can both generate and analyze the combinatorial traits efficiently. RegScan is capable of analyzing any number of traits together without the need to specify each trait individually. The main goal of the article is to show that RegScan can be the preferred analytical tool when large amounts of data need to be analyzed quickly using the allele frequency test. AVAILABILITY: Precompiled RegScan (all major platforms), source code, user guide and examples are freely available at www.biobank.ee/regscan. REQUIREMENTS: Qt 4.4.3 or newer for dynamic compilations.


Asunto(s)
Biología Computacional/métodos , Interpretación Estadística de Datos , Estudio de Asociación del Genoma Completo/métodos , Frecuencia de los Genes , Humanos , Modelos Lineales
9.
Eur J Nutr ; 56(7): 2379-2391, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-27469612

RESUMEN

PURPOSE: Milk provides a significant source of calcium, protein, vitamins and other minerals to Western populations throughout life. Due to its widespread use, the metabolic and health impact of milk consumption warrants further investigation and biomarkers would aid epidemiological studies. METHODS: Milk intake assessed by a validated food frequency questionnaire was analyzed against fasting blood metabolomic profiles from two metabolomic platforms in females from the TwinsUK cohort (n = 3559). The top metabolites were then replicated in two independent populations (EGCUT, n = 1109 and KORA, n = 1593), and the results from all cohorts were meta-analyzed. RESULTS: Four metabolites were significantly associated with milk intake in the TwinsUK cohort after adjustment for multiple testing (P < 8.08 × 10-5) and covariates (BMI, age, batch effects, family relatedness and dietary covariates) and replicated in the independent cohorts. Among the metabolites identified, the carnitine metabolite trimethyl-N-aminovalerate (ß = 0.012, SE = 0.002, P = 2.98 × 10-12) and the nucleotide uridine (ß = 0.004, SE = 0.001, P = 9.86 × 10-6) were the strongest novel predictive biomarkers from the non-targeted platform. Notably, the association between trimethyl-N-aminovalerate and milk intake was significant in a group of MZ twins discordant for milk intake (ß = 0.050, SE = 0.015, P = 7.53 × 10-4) and validated in the urine of 236 UK twins (ß = 0.091, SE = 0.032, P = 0.004). Two metabolites from the targeted platform, hydroxysphingomyelin C14:1 (ß = 0.034, SE = 0.005, P = 9.75 × 10-14) and diacylphosphatidylcholine C28:1 (ß = 0.034, SE = 0.004, P = 4.53 × 10-16), were also replicated. CONCLUSIONS: We identified and replicated in independent populations four novel biomarkers of milk intake: trimethyl-N-aminovalerate, uridine, hydroxysphingomyelin C14:1 and diacylphosphatidylcholine C28:1. Together, these metabolites have potential to objectively examine and refine milk-disease associations.


Asunto(s)
Biomarcadores/análisis , Metaboloma , Leche/efectos adversos , Adulto , Anciano , Animales , Biomarcadores/sangre , Biomarcadores/orina , Índice de Masa Corporal , Estudios de Cohortes , Dieta , Carbohidratos de la Dieta/administración & dosificación , Grasas de la Dieta/administración & dosificación , Proteínas en la Dieta/administración & dosificación , Femenino , Humanos , Masculino , Micronutrientes/administración & dosificación , Persona de Mediana Edad , Modelos Biológicos , Evaluación Nutricional , Sensibilidad y Especificidad , Encuestas y Cuestionarios , Reino Unido , Uridina/sangre , Uridina/orina , Valeratos/análisis , Valeratos/sangre , Valeratos/orina , Adulto Joven
10.
Am J Hum Genet ; 93(2): 264-77, 2013 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-24144296

RESUMEN

Refractive errors are common eye disorders of public health importance worldwide. Ocular axial length (AL) is the major determinant of refraction and thus of myopia and hyperopia. We conducted a meta-analysis of genome-wide association studies for AL, combining 12,531 Europeans and 8,216 Asians. We identified eight genome-wide significant loci for AL (RSPO1, C3orf26, LAMA2, GJD2, ZNRF3, CD55, MIP, and ALPPL2) and confirmed one previously reported AL locus (ZC3H11B). Of the nine loci, five (LAMA2, GJD2, CD55, ALPPL2, and ZC3H11B) were associated with refraction in 18 independent cohorts (n = 23,591). Differential gene expression was observed for these loci in minus-lens-induced myopia mouse experiments and human ocular tissues. Two of the AL genes, RSPO1 and ZNRF3, are involved in Wnt signaling, a pathway playing a major role in the regulation of eyeball size. This study provides evidence of shared genes between AL and refraction, but importantly also suggests that these traits may have unique pathways.


Asunto(s)
Longitud Axial del Ojo/metabolismo , Proteínas del Ojo/genética , Sitios Genéticos , Predisposición Genética a la Enfermedad , Errores de Refracción/genética , Adolescente , Adulto , Anciano , Pueblo Asiatico , Longitud Axial del Ojo/patología , Proteínas del Ojo/metabolismo , Femenino , Expresión Génica , Estudio de Asociación del Genoma Completo , Humanos , Masculino , Persona de Mediana Edad , Polimorfismo de Nucleótido Simple , Errores de Refracción/etnología , Errores de Refracción/patología , Transducción de Señal , Población Blanca
11.
PLoS Med ; 11(2): e1001606, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24586121

RESUMEN

BACKGROUND: Early identification of ambulatory persons at high short-term risk of death could benefit targeted prevention. To identify biomarkers for all-cause mortality and enhance risk prediction, we conducted high-throughput profiling of blood specimens in two large population-based cohorts. METHODS AND FINDINGS: 106 candidate biomarkers were quantified by nuclear magnetic resonance spectroscopy of non-fasting plasma samples from a random subset of the Estonian Biobank (n = 9,842; age range 18-103 y; 508 deaths during a median of 5.4 y of follow-up). Biomarkers for all-cause mortality were examined using stepwise proportional hazards models. Significant biomarkers were validated and incremental predictive utility assessed in a population-based cohort from Finland (n = 7,503; 176 deaths during 5 y of follow-up). Four circulating biomarkers predicted the risk of all-cause mortality among participants from the Estonian Biobank after adjusting for conventional risk factors: alpha-1-acid glycoprotein (hazard ratio [HR] 1.67 per 1-standard deviation increment, 95% CI 1.53-1.82, p = 5×10⁻³¹), albumin (HR 0.70, 95% CI 0.65-0.76, p = 2×10⁻¹8), very-low-density lipoprotein particle size (HR 0.69, 95% CI 0.62-0.77, p = 3×10⁻¹²), and citrate (HR 1.33, 95% CI 1.21-1.45, p = 5×10⁻¹°). All four biomarkers were predictive of cardiovascular mortality, as well as death from cancer and other nonvascular diseases. One in five participants in the Estonian Biobank cohort with a biomarker summary score within the highest percentile died during the first year of follow-up, indicating prominent systemic reflections of frailty. The biomarker associations all replicated in the Finnish validation cohort. Including the four biomarkers in a risk prediction score improved risk assessment for 5-y mortality (increase in C-statistics 0.031, p = 0.01; continuous reclassification improvement 26.3%, p = 0.001). CONCLUSIONS: Biomarker associations with cardiovascular, nonvascular, and cancer mortality suggest novel systemic connectivities across seemingly disparate morbidities. The biomarker profiling improved prediction of the short-term risk of death from all causes above established risk factors. Further investigations are needed to clarify the biological mechanisms and the utility of these biomarkers for guiding screening and prevention.


Asunto(s)
Biomarcadores/sangre , Causas de Muerte , Ensayos Analíticos de Alto Rendimiento/métodos , Espectroscopía de Resonancia Magnética , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Bancos de Muestras Biológicas , Ácido Cítrico/sangre , Estonia/epidemiología , Femenino , Finlandia/epidemiología , Humanos , Estimación de Kaplan-Meier , Lipoproteínas LDL/sangre , Masculino , Persona de Mediana Edad , Orosomucoide/análisis , Tamaño de la Partícula , Valor Predictivo de las Pruebas , Pronóstico , Modelos de Riesgos Proporcionales , Reproducibilidad de los Resultados , Medición de Riesgo , Factores de Riesgo , Albúmina Sérica/análisis , Albúmina Sérica Humana , Factores de Tiempo , Adulto Joven
12.
Eur J Med Res ; 28(1): 133, 2023 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-36966315

RESUMEN

BACKGROUND: Ischemic stroke (IS) is a major health risk without generally usable effective measures of primary prevention. Early warning signals that are easy to detect and widely available can save lives. Estonia has one nation-wide Electronic Health Record (EHR) database for the storage of medical information of patients from hospitals and primary care providers. METHODS: We extracted structured and unstructured data from the EHRs of participants of the Estonian Biobank (EstBB) and evaluated different formats of input data to understand how this continuously growing dataset should be prepared for best prediction. The utility of the EHR database for finding blood- and urine-based biomarkers for IS was demonstrated by applying different analytical and machine learning (ML) methods. RESULTS: Several early trends in common clinical laboratory parameter changes (set of red blood indices, lymphocyte/neutrophil ratio, etc.) were established for IS prediction. The developed ML models predicted the future occurrence of IS with very high accuracy and Random Forests was proved as the most applicable method to EHR data. CONCLUSIONS: We conclude that the EHR database and the risk factors uncovered are valuable resources in screening the population for risk of IS as well as constructing disease risk scores and refining prediction models for IS by ML.


Asunto(s)
Registros Electrónicos de Salud , Accidente Cerebrovascular Isquémico , Humanos , Estonia/epidemiología , Factores de Riesgo , Biomarcadores
13.
Nat Commun ; 14(1): 1662, 2023 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-36966134

RESUMEN

A long-term objective of network medicine is to replace our current, mainly phenotype-based disease definitions by subtypes of health conditions corresponding to distinct pathomechanisms. For this, molecular and health data are modeled as networks and are mined for pathomechanisms. However, many such studies rely on large-scale disease association data where diseases are annotated using the very phenotype-based disease definitions the network medicine field aims to overcome. This raises the question to which extent the biases mechanistically inadequate disease annotations introduce in disease association data distort the results of studies which use such data for pathomechanism mining. We address this question using global- and local-scale analyses of networks constructed from disease association data of various types. Our results indicate that large-scale disease association data should be used with care for pathomechanism mining and that analyses of such data should be accompanied by close-up analyses of molecular data for well-characterized patient cohorts.

14.
medRxiv ; 2023 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-37034709

RESUMEN

Introduction: Epilepsy is a common central nervous system disorder characterized by abnormal brain electrical activity. We aimed to compare the metabolic profiles of plasma from patients with epilepsy across different etiologies, seizure frequency, seizure type, and patient age to try to identify common disrupted pathways. Material and methods: We used data from three separate cohorts. The first cohort (PED-C) consisted of 31 pediatric patients with suspicion of a genetic disorder with unclear etiology; the second cohort (AD-C) consisted of 250 adults from the Estonian Biobank (EstBB), and the third cohort consisted of 583 adults ≥ 69 years of age from the EstBB (ELD-C). We compared untargeted metabolomics and lipidomics data between individuals with and without epilepsy in each cohort. Results: In the PED-C, significant alterations (p-value <0.05) were detected in sixteen different glycerophosphatidylcholines (GPC), dimethylglycine and eicosanedioate (C20-DC). In the AD-C, nine significantly altered metabolites were found, mainly triacylglycerides (TAG), which are also precursors in the GPC synthesis pathway. In the ELD-C, significant changes in twenty metabolites including multiple TAGs were observed in the metabolic profile of participants with previously diagnosed epilepsy. Pathway analysis revealed that among the metabolites that differ significantly between epilepsy-positive and epilepsy-negative patients in the PED-C, the lipid superpathway (p = 3.2*10-4) and phosphatidylcholine (p = 9.3*10-8) and lysophospholipid (p = 5.9*10-3) subpathways are statistically overrepresented. Analogously, in the AD-C, the triacylglyceride subclass turned out to be statistically overrepresented (p = 8.5*10-5) with the lipid superpathway (p = 1.4*10-2). The presented p-values are FDR-corrected. Conclusion: Our results suggest that cell membrane fluidity may have a significant role in the mechanism of epilepsy, and changes in lipid balance may indicate epilepsy. However, further studies are needed to evaluate whether untargeted metabolomics analysis could prove helpful in diagnosing epilepsy earlier.

15.
Commun Biol ; 6(1): 6, 2023 01 03.
Artículo en Inglés | MEDLINE | ID: mdl-36596879

RESUMEN

Refractive error, measured here as mean spherical equivalent (SER), is a complex eye condition caused by both genetic and environmental factors. Individuals with strong positive or negative values of SER require spectacles or other approaches for vision correction. Common genetic risk factors have been identified by genome-wide association studies (GWAS), but a great part of the refractive error heritability is still missing. Some of this heritability may be explained by rare variants (minor allele frequency [MAF] ≤ 0.01.). We performed multiple gene-based association tests of mean Spherical Equivalent with rare variants in exome array data from the Consortium for Refractive Error and Myopia (CREAM). The dataset consisted of over 27,000 total subjects from five cohorts of Indo-European and Eastern Asian ethnicity. We identified 129 unique genes associated with refractive error, many of which were replicated in multiple cohorts. Our best novel candidates included the retina expressed PDCD6IP, the circadian rhythm gene PER3, and P4HTM, which affects eye morphology. Future work will include functional studies and validation. Identification of genes contributing to refractive error and future understanding of their function may lead to better treatment and prevention of refractive errors, which themselves are important risk factors for various blinding conditions.


Asunto(s)
Miopía , Errores de Refracción , Humanos , Predisposición Genética a la Enfermedad , Estudio de Asociación del Genoma Completo , Miopía/genética , Errores de Refracción/genética , Población Blanca , Pueblos del Este de Asia
16.
Aging (Albany NY) ; 15(24): 14509-14552, 2023 12 26.
Artículo en Inglés | MEDLINE | ID: mdl-38149987

RESUMEN

Glycans are an essential structural component of immunoglobulin G (IgG) that modulate its structure and function. However, regulatory mechanisms behind this complex posttranslational modification are not well known. Previous genome-wide association studies (GWAS) identified 29 genomic regions involved in regulation of IgG glycosylation, but only a few were functionally validated. One of the key functional features of IgG glycosylation is the addition of galactose (galactosylation), a trait which was shown to be associated with ageing. We performed GWAS of IgG galactosylation (N=13,705) and identified 16 significantly associated loci, indicating that IgG galactosylation is regulated by a complex network of genes that extends beyond the galactosyltransferase enzyme that adds galactose to IgG glycans. Gene prioritization identified 37 candidate genes. Using a recently developed CRISPR/dCas9 system we manipulated gene expression of candidate genes in the in vitro IgG expression system. Upregulation of three genes, EEF1A1, MANBA and TNFRSF13B, changed the IgG glycome composition, which confirmed that these three genes are involved in IgG galactosylation in this in vitro expression system.


Asunto(s)
Galactosa , Estudio de Asociación del Genoma Completo , Redes Reguladoras de Genes , Inmunoglobulina G/genética , Polisacáridos/metabolismo
17.
Nat Genet ; 54(9): 1332-1344, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-36071172

RESUMEN

Although physical activity and sedentary behavior are moderately heritable, little is known about the mechanisms that influence these traits. Combining data for up to 703,901 individuals from 51 studies in a multi-ancestry meta-analysis of genome-wide association studies yields 99 loci that associate with self-reported moderate-to-vigorous intensity physical activity during leisure time (MVPA), leisure screen time (LST) and/or sedentary behavior at work. Loci associated with LST are enriched for genes whose expression in skeletal muscle is altered by resistance training. A missense variant in ACTN3 makes the alpha-actinin-3 filaments more flexible, resulting in lower maximal force in isolated type IIA muscle fibers, and possibly protection from exercise-induced muscle damage. Finally, Mendelian randomization analyses show that beneficial effects of lower LST and higher MVPA on several risk factors and diseases are mediated or confounded by body mass index (BMI). Our results provide insights into physical activity mechanisms and its role in disease prevention.


Asunto(s)
Estudio de Asociación del Genoma Completo , Conducta Sedentaria , Actinina/genética , Estudios Transversales , Ejercicio Físico/fisiología , Humanos , Actividades Recreativas
18.
J Pers Med ; 11(5)2021 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-33946982

RESUMEN

The current paradigm of personalized medicine envisages the use of genomic data to provide predictive information on the health course of an individual with the aim of prevention and individualized care. However, substantial efforts are required to realize the concept: enhanced genetic discoveries, translation into intervention strategies, and a systematic implementation in healthcare. Here we review how further genetic discoveries are improving personalized prediction and advance functional insights into the link between genetics and disease. In the second part we give our perspective on the way these advances in genomic research will transform the future of personalized prevention and medicine using Estonia as a primer.

19.
Clin Rheumatol ; 40(10): 4157-4165, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34101054

RESUMEN

BACKGROUND: Juvenile idiopathic arthritis (JIA) is the most common chronic rheumatic condition of childhood. Genetic association studies have revealed several JIA susceptibility loci with the strongest effect size observed in the human leukocyte antigen (HLA) region. Genome-wide association studies have augmented the number of JIA-associated loci, particularly for non-HLA genes. The aim of this study was to identify new associations at non-HLA loci predisposing to the risk of JIA development in Estonian patients. METHODS: We performed genome-wide association analyses in an entire JIA case-control sample (All-JIA) and in a case-control sample for oligoarticular JIA, the most prevalent JIA subtype. The entire cohort was genotyped using the Illumina HumanOmniExpress BeadChip arrays. After imputation, 16,583,468 variants were analyzed in 263 cases and 6956 controls. RESULTS: We demonstrated nominal evidence of association for 12 novel non-HLA loci not previously implicated in JIA predisposition. We replicated known JIA associations in CLEC16A and VCTN1 regions in the oligoarticular JIA sample. The strongest associations in the All-JIA analysis were identified at PRKG1 (P = 2,54 × 10-6), LTBP1 (P = 9,45 × 10-6), and ELMO1 (P = 1,05 × 10-5). In the oligoarticular JIA analysis, the strongest associations were identified at NFIA (P = 5,05 × 10-6), LTBP1 (P = 9,95 × 10-6), MX1 (P = 1,65 × 10-5), and CD200R1 (P = 2,59 × 10-5). CONCLUSION: This study increases the number of known JIA risk loci and provides additional evidence for the existence of overlapping genetic risk loci between JIA and other autoimmune diseases, particularly rheumatoid arthritis. The reported loci are involved in molecular pathways of immunological relevance and likely represent genomic regions that confer susceptibility to JIA in Estonian patients. Key Points • Juvenile idiopathic arthritis (JIA) is the most common childhood rheumatic disease with heterogeneous presentation and genetic predisposition. • Present genome-wide association study for Estonian JIA patients is first of its kind in Northern and Northeastern Europe. • The results of the present study increase the knowledge about JIA risk loci replicating some previously described associations, so adding weight to their relevance and describing novel loci. • The study provides additional evidence for the existence of overlapping genetic risk loci between JIA and other autoimmune diseases, particularly rheumatoid arthritis.


Asunto(s)
Artritis Juvenil , Predisposición Genética a la Enfermedad , Artritis Juvenil/genética , Estudios de Casos y Controles , Estonia , Estudio de Asociación del Genoma Completo , Humanos , Polimorfismo de Nucleótido Simple
20.
J Nanosci Nanotechnol ; 10(9): 5903-7, 2010 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-21133125

RESUMEN

The use of polymeric nanoparticles as drug delivery devices is becoming increasingly prevalent in a variety of therapeutic applications. Despite their widespread clinical use, the factors influencing the release profiles of nanoparticle-encapsulated drugs are still not quantitatively understood. We present here a new, semi-empirical model of drug release from polymeric nanoparticles using a formulation of dexamethasone encapsulated within poly(lactic-co-glycolic acid) to set model parameters. We introduce a three-dimensional voxel-based framework for Monte Carlo simulations that enables direct investigation of the entire spherical nanoparticle during particle degradation and drug release. Due to implementation of this model at the nanoscale, we utilize assumptions that simplify the model while still allowing multi-phase drug release to be simulated with good correlation to experimental results. In the future, emerging mechanistic understandings of nanoparticle drug release may be integrated into this simulation framework to increase predictive power.


Asunto(s)
Sistemas de Liberación de Medicamentos , Nanopartículas/química , Dexametasona/administración & dosificación , Dexametasona/farmacocinética , Humanos , Técnicas In Vitro , Ácido Láctico/química , Modelos Biológicos , Método de Montecarlo , Nanotecnología , Ácido Poliglicólico/química , Copolímero de Ácido Poliláctico-Ácido Poliglicólico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA