Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
BMC Biol ; 10: 40, 2012 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-22559716

RESUMEN

UNLABELLED: The Deepwater Horizon disaster was the largest marine oil spill in history, and total vertical exposure of oil to the water column suggests it could impact an enormous diversity of ecosystems. The most vulnerable organisms are those encountering these pollutants during their early life stages. Water-soluble components of crude oil and specific polycyclic aromatic hydrocarbons have been shown to cause defects in cardiovascular and craniofacial development in a variety of teleost species, but the developmental origins of these defects have yet to be determined. We have adopted zebrafish, Danio rerio, as a model to test whether water accumulated fractions (WAF) of the Deepwater Horizon oil could impact specific embryonic developmental processes. While not a native species to the Gulf waters, the developmental biology of zebrafish has been well characterized and makes it a powerful model system to reveal the cellular and molecular mechanisms behind Macondo crude toxicity. RESULTS: WAF of Macondo crude oil sampled during the oil spill was used to treat zebrafish throughout embryonic and larval development. Our results indicate that the Macondo crude oil causes a variety of significant defects in zebrafish embryogenesis, but these defects have specific developmental origins. WAF treatments caused defects in craniofacial development and circulatory function similar to previous reports, but we extend these results to show they are likely derived from an earlier defect in neural crest cell development. Moreover, we demonstrate that exposure to WAFs causes a variety of novel deformations in specific developmental processes, including programmed cell death, locomotor behavior, sensory and motor axon pathfinding, somitogenesis and muscle patterning. Interestingly, the severity of cell death and muscle phenotypes decreased over several months of repeated analysis, which was correlated with a rapid drop-off in the aromatic and alkane hydrocarbon components of the oil. CONCLUSIONS: Whether these teratogenic effects are unique to the oil from the Deepwater Horizon oil spill or generalizable for most crude oil types remains to be determined. This work establishes a model for further investigation into the molecular mechanisms behind crude oil mediated deformations. In addition, due to the high conservation of genetic and cellular processes between zebrafish and other vertebrates, our work also provides a platform for more focused assessment of the impact that the Deepwater Horizon oil spill has had on the early life stages of native fish species in the Gulf of Mexico and the Atlantic Ocean.


Asunto(s)
Contaminación por Petróleo/efectos adversos , Petróleo/toxicidad , Contaminantes Químicos del Agua/toxicidad , Pez Cebra/embriología , Pez Cebra/crecimiento & desarrollo , Animales , Sistema Cardiovascular/efectos de los fármacos , Sistema Cardiovascular/embriología , Sistema Cardiovascular/crecimiento & desarrollo , Desastres , Embrión no Mamífero/anomalías , Embrión no Mamífero/embriología , Monitoreo del Ambiente , Golfo de México , Cabeza/anomalías , Cabeza/embriología , Cabeza/crecimiento & desarrollo , Modelos Animales , Actividad Motora , Petróleo/análisis , Contaminantes Químicos del Agua/análisis , Pez Cebra/anomalías
2.
BMC Biotechnol ; 12: 3, 2012 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-22248071

RESUMEN

BACKGROUND: Cloning vectors capable of retroviral transduction have enabled stable gene overexpression in numerous mitotic cell lines. However, the relatively small number of feasible restriction enzyme sequences in their cloning sites can hinder successful generation of overexpression constructs if these sequences are also present in the target cDNA insert. RESULTS: Utilizing ligation-independent cloning (LIC) technology, we have modified the highly efficient retroviral transduction vector, pBABE, to eliminate reliance on restriction enzymes for cloning. Instead, the modified plasmid, pBLIC, utilizes random 12/13-base overhangs generated by T4 DNA polymerase 3' exonuclease activity. PCR-based introduction of the complementary sequence into any cDNA of interest enables universal cloning into pBLIC. Here we describe creation of the pBLIC plasmid, and demonstrate successful cloning and protein overexpression from three different cDNAs, Bax, catalase, and p53 through transduction into the human prostate cancer cell line, LNCaP or the human lung cancer line, H358. CONCLUSIONS: Our results show that pBLIC vector retains the high transduction efficiency of the original pBABE while eliminating the requirement for checking individual cDNA inserts for internal restriction sites. Thus it comprises an effective retroviral cloning system for laboratory-scale stable gene overexpression or for high-throughput applications such as creation of retroviral cDNA libraries. To our knowledge, pBLIC is the first LIC vector for retroviral transduction-mediated stable gene expression in mammalian cells.


Asunto(s)
Clonación Molecular/métodos , Vectores Genéticos , Retroviridae/genética , Transducción Genética , Catalasa/biosíntesis , Catalasa/genética , Línea Celular Tumoral , Enzimas de Restricción del ADN/metabolismo , ADN Complementario/genética , ADN Complementario/metabolismo , Expresión Génica , Humanos , Plásmidos , Reproducibilidad de los Resultados , Proteína p53 Supresora de Tumor/biosíntesis , Proteína p53 Supresora de Tumor/genética , Proteína X Asociada a bcl-2/biosíntesis , Proteína X Asociada a bcl-2/genética
3.
Oncotarget ; 6(13): 11519-29, 2015 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-25893378

RESUMEN

Due to sustaining elevated reactive oxygen species (ROS), oncogenic RAS-transformed cells upregulate redox-protective genes, among them the mammalian 8-oxodGTPase, MutT Homolog 1 (MTH1). We previously showed MTH1 abrogates RAS oncogene-induced senescence (OIS) in normal cells and that its inhibition compromises the tumorigenicity of established oncogenic RAS-harboring cancer cells. Here, we investigated how pre-transformation MTH1 levels in immortalized cells influence HRASV12-induced oncogenic transformation. We find MTH1 suppression prior to HRASV12 transduction into BEAS2B immortalized epithelial cells compromised maintenance of high RASV12- and oncogenic ROS-expressing cell populations. Furthermore, pre-transformation MTH1 levels modulated the efficiency of HRASV12-mediated soft agar colony formation. Downstream transformation-associated traits such as the epithelial-mesenchymal transition (EMT) were also compromised by MTH1 inhibition. These collective effects were observed to a greater degree in cells harboring high vs. low RASV12 levels, suggesting MTH1 is required for tumor cells to accumulate RAS oncoprotein. This is significant as, a priori, one cannot ascertain whether tumor-promoting adaptations wrought by introducing oncogenic RAS into an immortalized cell are capable of overcoming pre-transformation deficiencies. Our results suggest nucleotide pool sanitization comprises an important transformation-promoting requirement that, if compromised, cannot be adequately compensated post-transformation and thus is likely to affect optimal development and progression of RAS-driven tumors.


Asunto(s)
Transformación Celular Neoplásica/metabolismo , Enzimas Reparadoras del ADN/metabolismo , Células Epiteliales/enzimología , Monoéster Fosfórico Hidrolasas/metabolismo , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Carcinoma de Pulmón de Células no Pequeñas/enzimología , Carcinoma de Pulmón de Células no Pequeñas/patología , Línea Celular , Proliferación Celular , Transformación Celular Neoplásica/genética , Transformación Celular Neoplásica/patología , Enzimas Reparadoras del ADN/genética , Células Epiteliales/patología , Transición Epitelial-Mesenquimal , Regulación Neoplásica de la Expresión Génica , Glucólisis , Humanos , Neoplasias Pulmonares/enzimología , Neoplasias Pulmonares/patología , Estrés Oxidativo , Monoéster Fosfórico Hidrolasas/genética , Proteínas Proto-Oncogénicas p21(ras)/genética , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal , Factores de Tiempo , Transfección
4.
PLoS One ; 8(6): e68003, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23840802

RESUMEN

Androgen deprivation (AD) is an effective method for initially suppressing prostate cancer (PC) progression. However, androgen-refractory PC cells inevitably emerge from the androgen-responsive tumor, leading to incurable disease. Recent studies have shown AD induces cellular senescence, a phenomenon that is cell-autonomously tumor-suppressive but which confers tumor-promoting adaptations that can facilitate the advent of senescence-resistant malignant cell populations. Because androgen-refractory PC cells emerge clonally from the originally androgen-responsive tumor, we sought to investigate whether AD-induced senescence (ADIS) affects acquisition of androgen-refractory behavior in androgen-responsive LNCaP and LAPC4 prostate cancer cells. We find that repeated exposure of these androgen-responsive cells to senescence-inducing stimuli via cyclic AD leads to the rapid emergence of ADIS-resistant, androgen-refractory cells from the bulk senescent cell population. Our results show that the ADIS phenotype is associated with tumor-promoting traits, notably chemoresistance and enhanced pro-survival mechanisms such as inhibition of p53-mediated cell death, which encourage persistence of the senescent cells. We further find that pharmacologic enforcement of p53/Bax activation via Nutlin-3 prior to establishment of ADIS is required to overcome the associated pro-survival response and preferentially trigger pervasive cell death instead of senescence during AD. Thus our study demonstrates that ADIS promotes outgrowth of androgen-refractory PC cells and is consequently a suboptimal tumor-suppressor response to AD.


Asunto(s)
Andrógenos/genética , Andrógenos/metabolismo , Senescencia Celular/genética , Neoplasias de la Próstata/genética , Neoplasias de la Próstata/patología , Muerte Celular/genética , Línea Celular Tumoral , Regulación Neoplásica de la Expresión Génica/genética , Humanos , Masculino , Neoplasias de la Próstata/metabolismo , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo , Proteína X Asociada a bcl-2/genética , Proteína X Asociada a bcl-2/metabolismo
5.
Metallomics ; 5(11): 1491-502, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-23982218

RESUMEN

Vanadium, abbreviated V, is an early transition metal that readily forms coordination complexes with a variety of biological products such as proteins, metabolites, membranes and other structures. The formation of coordination complexes stabilizes metal ions, which in turn impacts the biodistribution of the metal. To understand the biodistribution of V, V in oxidation state iv in the form of vanadyl sulfate (25, 50, 100 mg V daily) was given orally for 6 weeks to 16 persons with type 2 diabetes. Elemental V was determined using Graphite Furnas Atomic Absorption Spectrometry against known concentrations of V in serum, blood or urine. Peak serum V levels were 15.4 ± 6.5, 81.7 ± 40 and 319 ± 268 ng ml(-1) respectively, and mean peak serum V was positively correlated with dose administered (r = 0.992, p = 0.079), although large inter-individual variability was found. Total serum V concentration distribution fit a one compartment open model with a first order rate constant for excretion with mean half times of 4.7 ± 1.6 days and 4.6 ± 2.5 days for the 50 and 100 mg V dose groups respectively. At steady state, 24 hour urinary V output was 0.18 ± 0.24 and 0.97 ± 0.84 mg in the 50 and 100 mg V groups respectively, consistent with absorption of 1 percent or less of the administered dose. Peak V in blood and serum were positively correlated (r = 0.971, p < 0.0005). The serum to blood V ratio for the patients receiving 100 mg V was 1.7 ± 0.45. Regression analysis showed that glycohemoglobin was a negative predictor of the natural log(ln) peak serum V (R(2) = 0.40, p = 0.009) and a positive predictor of the euglycemic-hyperinsulinemic clamp results at high insulin values (R(2) = 0.39, p = 0.010). Insulin sensitivity measured by euglycemic-hyperinsulinemic clamp was not significantly correlated with ln peak serum V. Globulin and glycohemoglobin levels taken together were negative predictors of fasting blood glucose (R(2) = 0.49, p = 0.013). Although V accumulation in serum was dose-dependent, no correlation between total serum V concentration and the insulin-like response was found in this first attempt to correlate anti-diabetic activity with total serum V. This study suggests that V pools other than total serum V are likely related to the insulin-like effect of this metal. These results, obtained in diabetic patients, document the need for consideration of the coordination chemistry of metabolites and proteins with vanadium in anti-diabetic vanadium complexes.


Asunto(s)
Diabetes Mellitus Tipo 2/sangre , Hipoglucemiantes/uso terapéutico , Compuestos de Vanadio/uso terapéutico , Administración Oral , Adulto , Anciano , Glucemia/efectos de los fármacos , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Diabetes Mellitus Tipo 2/orina , Femenino , Globulinas , Hemoglobina Glucada/metabolismo , Humanos , Hipoglucemiantes/administración & dosificación , Hipoglucemiantes/orina , Masculino , Persona de Mediana Edad , Análisis de Regresión , Compuestos de Vanadio/administración & dosificación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA