RESUMEN
Heat shock factor 1 (HSF-1) and forkhead box O (FOXO) are key transcription factors that protect cells from various stresses. In Caenorhabditis elegans, HSF-1 and FOXO together promote a long life span when insulin/IGF-1 signaling (IIS) is reduced. However, it remains poorly understood how HSF-1 and FOXO cooperate to confer IIS-mediated longevity. Here, we show that prefoldin 6 (PFD-6), a component of the molecular chaperone prefoldin-like complex, relays longevity response from HSF-1 to FOXO under reduced IIS. We found that PFD-6 was specifically required for reduced IIS-mediated longevity by acting in the intestine and hypodermis. We showed that HSF-1 increased the levels of PFD-6 proteins, which in turn directly bound FOXO and enhanced its transcriptional activity. Our work suggests that the prefoldin-like chaperone complex mediates longevity response from HSF-1 to FOXO to increase the life span in animals with reduced IIS.
Asunto(s)
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Factores de Transcripción Forkhead/metabolismo , Longevidad/genética , Chaperonas Moleculares/metabolismo , Factores de Transcripción/metabolismo , Animales , Insulina/metabolismo , Factor I del Crecimiento Similar a la Insulina/metabolismo , Intestinos/fisiología , Chaperonas Moleculares/genética , Unión Proteica , Transducción de Señal/genética , Tejido Subcutáneo/fisiología , Activación Transcripcional/genéticaRESUMEN
Aging is associated with changes in a variety of biological processes at the transcriptomic level, including gene expression. Two types of aging occur during a lifetime: chronological and physiological aging. However, dissecting the difference between chronological and physiological ages at the transcriptomic level has been a challenge because of its complexity. We analyzed the transcriptomic features associated with physiological and chronological aging using Caenorhabditis elegans as a model. Many structural and functional transcript elements, such as noncoding RNAs and intron-derived transcripts, were up-regulated with chronological aging. In contrast, mRNAs with many biological functions, including RNA processing, were down-regulated with physiological aging. We also identified an age-dependent increase in the usage of distal 3' splice sites in mRNA transcripts as a biomarker of physiological aging. Our study provides crucial information for dissecting chronological and physiological aging at the transcriptomic level.
Asunto(s)
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Animales , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Envejecimiento/genética , Envejecimiento/metabolismo , Perfilación de la Expresión Génica , Proteínas de Caenorhabditis elegans/genética , TranscriptomaRESUMEN
The oligosaccharyl transferase (OST) protein complex mediates the N-linked glycosylation of substrate proteins in the endoplasmic reticulum (ER), which regulates stability, activity, and localization of its substrates. Although many OST substrate proteins have been identified, the physiological role of the OST complex remains incompletely understood. Here we show that the OST complex in C. elegans is crucial for ER protein homeostasis and defense against infection with pathogenic bacteria Pseudomonas aeruginosa (PA14), via immune-regulatory PMK-1/p38 MAP kinase. We found that genetic inhibition of the OST complex impaired protein processing in the ER, which in turn up-regulated ER unfolded protein response (UPRER). We identified vitellogenin VIT-6 as an OST-dependent glycosylated protein, critical for maintaining survival on PA14. We also showed that the OST complex was required for up-regulation of PMK-1 signaling upon infection with PA14. Our study demonstrates that an evolutionarily conserved OST complex, crucial for ER homeostasis, regulates host defense mechanisms against pathogenic bacteria.
Asunto(s)
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Retículo Endoplásmico/metabolismo , Proteostasis/fisiología , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo , Animales , Hexosiltransferasas/metabolismo , Inmunidad Innata/fisiología , Sistema de Señalización de MAP Quinasas/fisiología , Proteínas de la Membrana/metabolismo , Pseudomonas aeruginosa/metabolismo , Transducción de Señal/fisiología , Factores de Transcripción/metabolismo , Respuesta de Proteína Desplegada/fisiología , Regulación hacia Arriba/fisiología , Vitelogeninas/metabolismoRESUMEN
BACKGROUND: Diesel exhaust particles (DEPs) are the main component of traffic-related air pollution and have been implicated in the pathogenesis and exacerbation of asthma. However, the mechanism by which DEP exposure aggravates asthma symptoms remains unclear. OBJECTIVE: This study aimed to identify a key cellular player of air pollutant-induced asthma exacerbation and development. METHODS: We examined the distribution of innate immune cells in the murine models of asthma induced by house dust mite and DEP. Changes in immune cell profiles caused by DEP exposure were confirmed by flow cytometry and RNA-Seq analysis. The roles of sialic acid-binding, Ig-like lectin F (SiglecF)-positive neutrophils were further evaluated by adoptive transfer experiment and in vitro functional studies. RESULTS: DEP exposure induced a unique population of lung granulocytes that coexpressed Ly6G and SiglecF. These cells differed phenotypically, morphologically, functionally, and transcriptionally from other SiglecF-expressing cells in the lungs. Our findings with murine models suggest that intratracheal challenge with DEPs induces the local release of adenosine triphosphate, which is a damage-associated molecular pattern signal. Adenosine triphosphate promotes the expression of SiglecF on neutrophils, and these SiglecF+ neutrophils worsen type 2 and 3 airway inflammation by producing high levels of cysteinyl leukotrienes and neutrophil extracellular traps. We also found Siglec8- (which corresponds to murine SiglecF) expressing neutrophils, and we found it in patients with asthma-chronic obstructive pulmonary disease overlap. CONCLUSION: The SiglecF+ neutrophil is a novel and critical player in airway inflammation and targeting this population could reverse or ameliorate asthma.
Asunto(s)
Contaminantes Atmosféricos , Asma , Adenosina Trifosfato/metabolismo , Contaminantes Atmosféricos/toxicidad , Animales , Humanos , Inflamación/metabolismo , Pulmón , Ratones , Neutrófilos/patología , Emisiones de Vehículos/toxicidadRESUMEN
Transcriptome analysis is widely used for current biological research but remains challenging for many experimental scientists. Here, we present a brief but broad guideline for transcriptome analysis, focusing on RNA sequencing, by providing the list of publicly available datasets, tools, and R packages for practical transcriptome analysis. This work will be useful for biologists to perform key transcriptomic analysis with minimum expertise in bioinformatics.
Asunto(s)
Biología Computacional , Análisis de Secuencia de ARN , Humanos , Biología Computacional/métodos , Perfilación de la Expresión Génica/métodos , Análisis de Secuencia de ARN/métodos , Transcriptoma/genéticaRESUMEN
Aging is accompanied by the gradual deregulation of the transcriptome. However, whether age-dependent changes in the transcriptome are evolutionarily conserved or diverged remains largely unexplored. Here, we performed a meta-analysis examining the age-dependent changes in the transcriptome using publicly available datasets of 11 representative metazoans, ranging from Caenorhabditis elegans to humans. To identify the transcriptomic changes associated with aging, we analyzed various aspects of the transcriptome, including genome composition, RNA processing, and functional consequences. The use of introns and novel splice sites tended to increase with age, particularly in the brain. In addition, our analysis suggests that the age-dependent accumulation of premature termination codon-containing transcripts is a common feature of aging across multiple animal species. Using C. elegans as a test model, we showed that several splicing factors that are evolutionarily conserved and age-dependently downregulated were required to maintain a normal lifespan. Thus, aberrant RNA processing appears to be associated with aging and a short lifespan in various species.
Asunto(s)
Envejecimiento , Caenorhabditis elegans , Transcriptoma , Animales , Envejecimiento/genética , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Humanos , Procesamiento Postranscripcional del ARN , Longevidad/genéticaRESUMEN
Classical genetic analysis is invaluable for understanding the genetic interactions underlying specific phenotypes, but requires laborious and subjective experiments to characterize polygenic and quantitative traits. Contrarily, transcriptomic analysis enables the simultaneous and objective identification of multiple genes whose expression changes are associated with specific phenotypes. Here, we conducted transcriptomic analysis of genes crucial for longevity using datasets with daf-2/insulin/IGF-1 receptor mutant Caenorhabditis elegans. Our analysis unraveled multiple epistatic relationships at the transcriptomic level, in addition to verifying genetically established interactions. Our combinatorial analysis also revealed transcriptomic changes associated with longevity conferred by daf-2 mutations. In particular, we demonstrated that the extent of lifespan changes caused by various mutant alleles of the longevity transcription factor daf-16/FOXO matched their effects on transcriptomic changes in daf-2 mutants. We identified specific aging-regulating signaling pathways and subsets of structural and functional RNA elements altered by different genes in daf-2 mutants. Lastly, we elucidated the functional cooperation between several longevity regulators, based on the combination of transcriptomic and molecular genetic analysis. These data suggest that different biological processes coordinately exert their effects on longevity in biological networks. Together our work demonstrates the utility of transcriptomic dissection analysis for identifying important genetic interactions for physiological processes, including aging and longevity.
Asunto(s)
Caenorhabditis elegans , Longevidad , Transducción de Señal , Transcriptoma , Animales , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Insulina/metabolismo , Factor I del Crecimiento Similar a la Insulina/metabolismo , Mutación , Receptor de Insulina/genética , Receptor de Insulina/metabolismo , Transducción de Señal/genética , Transcriptoma/genéticaRESUMEN
Sexual dimorphism affects various biological functions, including immune responses. However, the mechanisms by which sex alters immunity remain largely unknown. Using Caenorhabditis elegans as a model species, we showed that males exhibit enhanced immunity against various pathogenic bacteria through the upregulation of HLH-30 (Helix Loop Helix 30/TFEB (transcription factor EB)), a transcription factor crucial for macroautophagy/autophagy. Compared with hermaphroditic C. elegans, males displayed increased activity of HLH-30/TFEB, which contributed to enhanced antibacterial immunity. atg-2 (AuTophaGy (yeast Atg homolog) 2) upregulated by HLH-30/TFEB mediated increased immunity in male C. elegans. Thus, the males appear to be equipped with enhanced HLH-30/TFEB-mediated autophagy, which increases pathogen resistance, and this may functionally prolong mate-searching ability with reduced risk of infection.Abbreviations: atg-2: AuTophaGy (yeast Atg homolog) 2; FUDR: 5-fluoro-2'-deoxyuridine; GSEA: gene set enrichment analysis; HLH-30: Helix Loop Helix 30; LC3: microtubule associated protein 1 light chain 3; NGM: nematode growth media; RNA-seq: RNA sequencing; SEM: standard error of the mean; TFEB: transcription factor EB; WT: wild-type.
RESUMEN
In this paper, the non-linearity in memristor's current-voltage relationship that can affect half-selected cells is analyzed. From the simulation, for the V(DD)/2 scheme, if the non-linear coefficient is larger than 8, unwanted resistance loss during the write time can be suppressed less than 10%. Comparing the V(DD)/2 and V(DD)/3 scheme, the V(DD)/2 scheme can reduce the current consumption by 2 orders of magnitude with little larger resistance change in half-selected cells than the V(DD)/3.
RESUMEN
Accumulating evidence indicates that mitochondria play crucial roles in immunity. However, the role of the mitochondrial Krebs cycle in immunity remains largely unknown, in particular at the organism level. Here we show that mitochondrial aconitase, ACO-2, a Krebs cycle enzyme that catalyzes the conversion of citrate to isocitrate, inhibits immunity against pathogenic bacteria in C. elegans. We find that the genetic inhibition of aco-2 decreases the level of oxaloacetate. This increases the mitochondrial unfolded protein response, subsequently upregulating the transcription factor ATFS-1, which contributes to enhanced immunity against pathogenic bacteria. We show that the genetic inhibition of mammalian ACO2 increases immunity against pathogenic bacteria by modulating the mitochondrial unfolded protein response and oxaloacetate levels in cultured cells. Because mitochondrial aconitase is highly conserved across phyla, a therapeutic strategy targeting ACO2 may eventually help properly control immunity in humans.
Asunto(s)
Aconitato Hidratasa , Caenorhabditis elegans , Humanos , Animales , Aconitato Hidratasa/genética , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Ácido Oxaloacético , Oxaloacetatos , Respuesta de Proteína Desplegada , Mamíferos/metabolismoRESUMEN
Dietary antigens affect the adaptive immunity of the host by inducing regulatory T cells and IgE-producing B cells. However, their roles in innate immune compartments such as innate lymphoid cells (ILCs) and intestinal epithelial cells (IECs) are unclear. Here, using antigen-free (AF) mice, which are germ-free (GF) mice fed with amino-acid-based diet, we found dietary proteins suppress the development of GATA-3-expressing ILC2s independent of the adaptive immune cells. These cells produce more type 2 cytokines and upregulated proliferation and activation markers such as Ki-67, CD69, and CD25. With this, AF mice had increased expressions of tuft cell-specific transcripts such as Il25, Il33, Dclk1, Trpm5, and Pou2f3 in IECs. Accordingly, expanded ILC2s upregulated IL-17RB, a receptor of IL-25, and their proliferation was blocked by IL-25 neutralizing or IL-17RB blocking antibodies. These results suggest a new dialogue between dietary antigens, IECs, and ILCs in which dietary antigens suppress ILC2 activation and proliferation by restraining homeostatic IL-25 production, potentially limiting type 2 immunity by food antigens.
Asunto(s)
Inmunidad Innata , Linfocitos , Animales , Proliferación Celular , Citocinas , Dieta , RatonesRESUMEN
DNA methylation is a crucial epigenetic modification in the establishment of cell-type-specific characteristics. However, how DNA methylation is selectively reprogrammed at adipocyte-specific loci during adipogenesis remains unclear. Here, we show that the transcription factor, C/EBPδ, and the DNA methylation eraser, TET3, cooperatively control adipocyte differentiation. We perform whole-genome bisulfite sequencing to explore the dynamics and regulatory mechanisms of DNA methylation in adipocyte differentiation. During adipogenesis, DNA methylation selectively decreases at adipocyte-specific loci carrying the C/EBP binding motif, which correlates with the activity of adipogenic promoters and enhancers. Mechanistically, we find that C/EBPδ recruits a DNA methylation eraser, TET3, to catalyse DNA demethylation at the C/EBP binding motif and stimulate the expression of key adipogenic genes. Ectopic expression of TET3 potentiates in vitro and in vivo adipocyte differentiation and recovers downregulated adipogenic potential, which is observed in aged mice and humans. Taken together, our study highlights how targeted reprogramming of DNA methylation through cooperative action of the transcription factor C/EBPδ, and the DNA methylation eraser TET3, controls adipocyte differentiation.
Asunto(s)
Adipogénesis , Dioxigenasas , Adipogénesis/genética , Animales , Proteínas Potenciadoras de Unión a CCAAT , Diferenciación Celular/genética , Metilación de ADN , Dioxigenasas/genética , Epigénesis Genética , Humanos , Ratones , Factores de Transcripción/genéticaRESUMEN
A hallmark of aging is immunosenescence, a decline in immune functions, which appeared to be inevitable in living organisms, including Caenorhabditis elegans. Here, we show that genetic inhibition of the DAF-2/insulin/IGF-1 receptor drastically enhances immunocompetence in old age in C. elegans. We demonstrate that longevity-promoting DAF-16/FOXO and heat-shock transcription factor 1 (HSF-1) increase immunocompetence in old daf-2(-) animals. In contrast, p38 mitogen-activated protein kinase 1 (PMK-1), a key determinant of immunity, is only partially required for this rejuvenated immunity. The up-regulation of DAF-16/FOXO and HSF-1 decreases the expression of the zip-10/bZIP transcription factor, which in turn down-regulates INS-7, an agonistic insulin-like peptide, resulting in further reduction of insulin/IGF-1 signaling (IIS). Thus, reduced IIS prevents immune aging via the up-regulation of anti-aging transcription factors that modulate an endocrine insulin-like peptide through a feedforward mechanism. Because many functions of IIS are conserved across phyla, our study may lead to the development of strategies against immune aging in humans.
Asunto(s)
Envejecimiento/metabolismo , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Factor I del Crecimiento Similar a la Insulina/metabolismo , Insulina/metabolismo , Transducción de Señal/fisiología , Animales , Caenorhabditis elegans/metabolismo , Regulación hacia Abajo/fisiología , Factores de Transcripción Forkhead/metabolismo , Longevidad/fisiología , Receptor de Insulina/metabolismo , Activación Transcripcional/fisiología , Regulación hacia Arriba/fisiología , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismoRESUMEN
Melanoma and melanocytic nevi harbor shared lineage-specific antigens and oncogenic mutations. Yet, the relationship between the immune system and melanocytic nevi is unclear. Using a patient-derived xenograft (PDX) model, we found that 81.8% of the transplanted nevi underwent spontaneous regression, while peripheral skin remained intact. Nevus-resident CD4+ T helper 1 cells, which exhibited a massive clonal expansion to melanocyte-specific antigens, were responsible for nevus rejection. Boosting regulatory T cell suppressive function with low-dose exogenous human interleukin-2 injection or treatment with a human leukocyte antigen (HLA) class II-blocking antibody prevented nevus rejection. Notably, mice with rejected nevus PDXs were protected from melanoma tumor growth. We detected a parallel CD4+ T cell-dominant immunity in clinically regressing melanocytic nevi. These findings reveal a mechanistic explanation for spontaneous nevus regression in humans and posit the activation of nevus-resident CD4+ effector T cells as a novel strategy for melanoma immunoprevention and treatment.
RESUMEN
Insulin/IGF-1 signaling (IIS) regulates various physiological aspects in numerous species. In Caenorhabditis elegans, mutations in the daf-2/insulin/IGF-1 receptor dramatically increase lifespan and immunity, but generally impair motility, growth, and reproduction. Whether these pleiotropic effects can be dissociated at a specific step in insulin/IGF-1 signaling pathway remains unknown. Through performing a mutagenesis screen, we identified a missense mutation daf-18(yh1) that alters a cysteine to tyrosine in DAF-18/PTEN phosphatase, which maintained the long lifespan and enhanced immunity, while improving the reduced motility in adult daf-2 mutants. We showed that the daf-18(yh1) mutation decreased the lipid phosphatase activity of DAF-18/PTEN, while retaining a partial protein tyrosine phosphatase activity. We found that daf-18(yh1) maintained the partial activity of DAF-16/FOXO but restricted the detrimental upregulation of SKN-1/NRF2, contributing to beneficial physiological traits in daf-2 mutants. Our work provides important insights into how one evolutionarily conserved component, PTEN, can coordinate animal health and longevity.
Asunto(s)
Proteínas de Caenorhabditis elegans/genética , Caenorhabditis elegans/genética , Longevidad/genética , Mutación , Fosfohidrolasa PTEN/genética , Receptor IGF Tipo 1/genética , Animales , Animales Modificados Genéticamente , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Factores de Transcripción Forkhead/genética , Factores de Transcripción Forkhead/metabolismo , Aptitud Genética/genética , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Microscopía Fluorescente/métodos , Fosfohidrolasa PTEN/metabolismo , RNA-Seq/métodos , Receptor IGF Tipo 1/metabolismo , Receptor de Insulina/genética , Receptor de Insulina/metabolismoRESUMEN
Aging is associated with gradual deterioration of physiological and biochemical functions, including cognitive decline. Transcriptome profiling of brain samples from individuals of varying ages has identified the whole-transcriptome changes that underlie age-associated cognitive declines. In this review, we discuss transcriptome-based research on human brain aging performed by using microarray and RNA sequencing analyses. Overall, decreased synaptic function and increased immune function are prevalent in most regions of the aged brain. Age-associated gene expression changes are also cell dependent and region dependent and are affected by genotype. In addition, the transcriptome changes that occur during brain aging include different splicing events, intersample heterogeneity, and altered levels of various types of noncoding RNAs. Establishing transcriptome-based hallmarks of human brain aging will improve the understanding of cognitive aging and neurodegenerative diseases and eventually lead to interventions that delay or prevent brain aging.
Asunto(s)
Envejecimiento/genética , Encéfalo/metabolismo , Regulación de la Expresión Génica , Transcriptoma , Perfilación de la Expresión Génica , Humanos , Neuroglía/inmunología , Neuroglía/metabolismo , Sitios de Carácter Cuantitativo , Carácter Cuantitativo Heredable , ARN no Traducido/genética , Proteínas de Unión al ARN , Sinapsis/genéticaRESUMEN
Circadian gene expression is defined by the gene-specific phase and amplitude of daily oscillations in mRNA and protein levels. D site-binding protein mRNA (Dbp mRNA) shows high-amplitude oscillation; however, the underlying mechanism remains elusive. Here, we demonstrate that heterogeneous nuclear ribonucleoprotein K (hnRNP K) is a key regulator that activates Dbp transcription via the poly(C) motif within its proximal promoter. Biochemical analyses identified hnRNP K as a specific protein that directly associates with the poly(C) motif in vitro Interestingly, we further confirmed the rhythmic binding of endogenous hnRNP K within the Dbp promoter through chromatin immunoprecipitation as well as the cycling expression of hnRNP K. Finally, knockdown of hnRNP K decreased mRNA oscillation in both Dbp and Dbp-dependent clock genes. Taken together, our results show rhythmic protein expression of hnRNP K and provide new insights into its function as a transcriptional amplifier of Dbp.
Asunto(s)
Ritmo Circadiano/genética , Proteínas de Unión al ADN/genética , Ribonucleoproteína Heterogénea-Nuclear Grupo K/genética , Regiones Promotoras Genéticas/genética , Factores de Transcripción/genética , Activación Transcripcional/genética , Células 3T3 , Animales , Línea Celular , Células HEK293 , Humanos , Ratones , Poli C/genética , Interferencia de ARN , ARN Mensajero/genética , ARN Interferente Pequeño/genéticaRESUMEN
The explosive growth of next-generation sequencing data has resulted in ultra-large-scale datasets and ensuing computational problems. In Korea, the amount of genomic data has been increasing rapidly in the recent years. Leveraging these big data requires researchers to use large-scale computational resources and analysis pipelines. A promising solution for addressing this computational challenge is cloud computing, where CPUs, memory, storage, and programs are accessible in the form of virtual machines. Here, we present a cloud computing-based system, Bio-Express, that provides user-friendly, cost-effective analysis of massive genomic datasets. Bio-Express is loaded with predefined multi-omics data analysis pipelines, which are divided into genome, transcriptome, epigenome, and metagenome pipelines. Users can employ predefined pipelines or create a new pipeline for analyzing their own omics data. We also developed several web-based services for facilitating downstream analysis of genome data. Bio-Express web service is freely available at https://www.bioexpress.re.kr/.
RESUMEN
Excessive glucose causes various diseases and decreases lifespan by altering metabolic processes, but underlying mechanisms remain incompletely understood. Here, we show that Lipin 1/LPIN-1, a phosphatidic acid phosphatase and a putative transcriptional coregulator, prevents life-shortening effects of dietary glucose on Caenorhabditis elegans. We found that depletion of lpin-1 decreased overall lipid levels, despite increasing the expression of genes that promote fat synthesis and desaturation, and downregulation of lipolysis. We then showed that knockdown of lpin-1 altered the composition of various fatty acids in the opposite direction of dietary glucose. In particular, the levels of two ω-6 polyunsaturated fatty acids (PUFAs), linoleic acid and arachidonic acid, were increased by knockdown of lpin-1 but decreased by glucose feeding. Importantly, these ω-6 PUFAs attenuated the short lifespan of glucose-fed lpin-1-inhibited animals. Thus, the production of ω-6 PUFAs is crucial for protecting animals from living very short under glucose-rich conditions.
Asunto(s)
Caenorhabditis elegans/enzimología , Ácidos Grasos Insaturados/metabolismo , Glucosa/metabolismo , Fosfatidato Fosfatasa/metabolismo , Animales , Caenorhabditis elegans/metabolismo , Dieta , HumanosRESUMEN
Chronic obstructive pulmonary disease (COPD) is a type of progressive lung disease, featured by airflow obstruction. Recently, a comprehensive analysis of the transcriptome in lung tissue of COPD patients was performed, but the heterogeneity of the sample was not seriously considered in characterizing the mechanistic dysregulation of COPD. Here, we established a new transcriptome analysis pipeline using a deconvolution process to reduce the heterogeneity and clearly identified that these transcriptome data originated from the mild or moderate stage of COPD patients. Differentially expressed or co-expressed genes in the protein interaction subnetworks were linked with mitochondrial dysfunction and the immune response, as expected. Computational protein localization prediction revealed that 19 proteins showing changes in subcellular localization were mostly related to mitochondria, suggesting that mislocalization of mitochondria-targeting proteins plays an important role in COPD pathology. Our extensive evaluation of COPD transcriptome data could provide guidelines for analyzing heterogeneous gene expression profiles and classifying potential candidate genes that are responsible for the pathogenesis of COPD.