RESUMEN
The emergence and global spread of SARS-CoV-2 has resulted in the urgent need for an in-depth understanding of molecular functions of viral proteins and their interactions with the host proteome. Several individual omics studies have extended our knowledge of COVID-19 pathophysiology1-10. Integration of such datasets to obtain a holistic view of virus-host interactions and to define the pathogenic properties of SARS-CoV-2 is limited by the heterogeneity of the experimental systems. Here we report a concurrent multi-omics study of SARS-CoV-2 and SARS-CoV. Using state-of-the-art proteomics, we profiled the interactomes of both viruses, as well as their influence on the transcriptome, proteome, ubiquitinome and phosphoproteome of a lung-derived human cell line. Projecting these data onto the global network of cellular interactions revealed crosstalk between the perturbations taking place upon infection with SARS-CoV-2 and SARS-CoV at different levels and enabled identification of distinct and common molecular mechanisms of these closely related coronaviruses. The TGF-ß pathway, known for its involvement in tissue fibrosis, was specifically dysregulated by SARS-CoV-2 ORF8 and autophagy was specifically dysregulated by SARS-CoV-2 ORF3. The extensive dataset (available at https://covinet.innatelab.org ) highlights many hotspots that could be targeted by existing drugs and may be used to guide rational design of virus- and host-directed therapies, which we exemplify by identifying inhibitors of kinases and matrix metalloproteases with potent antiviral effects against SARS-CoV-2.
Asunto(s)
COVID-19/metabolismo , Interacciones Huésped-Patógeno , Proteoma/metabolismo , Proteómica , SARS-CoV-2/patogenicidad , Síndrome Respiratorio Agudo Grave/metabolismo , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo/patogenicidad , Animales , Antivirales/farmacología , Autofagia/efectos de los fármacos , COVID-19/inmunología , COVID-19/virología , Línea Celular , Conjuntos de Datos como Asunto , Evaluación Preclínica de Medicamentos , Interacciones Huésped-Patógeno/inmunología , Humanos , Inhibidores de la Metaloproteinasa de la Matriz/farmacología , Fosforilación , Mapas de Interacción de Proteínas , Inhibidores de Proteínas Quinasas/farmacología , Procesamiento Proteico-Postraduccional , Proteoma/química , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo/inmunología , SARS-CoV-2/inmunología , Síndrome Respiratorio Agudo Grave/inmunología , Síndrome Respiratorio Agudo Grave/virología , Factor de Crecimiento Transformador beta/metabolismo , Ubiquitinación , Proteínas Virales/química , Proteínas Virales/metabolismo , Proteínas Viroporinas/metabolismoRESUMEN
BACKGROUND: Type I and type II diabetes mellitus (DM) patients have a higher prevalence of cardiovascular diseases, as well as a higher mortality risk of cardiovascular diseases and interventions. This study provides an update on the impact of DM on clinical outcomes, including mortality, complications and reinterventions, using data on percutaneous and surgical cardiac interventions in the Netherlands. METHODS: This is a retrospective, nearby nationwide study using real-world observational data registered by the Netherlands Heart Registration (NHR) between 2015 and 2020. Patients treated for combined or isolated coronary artery disease (CAD) and aortic valve disease (AVD) were studied. Bivariate analyses and multivariate logistic regression models were used to evaluate the association between DM and clinical outcomes both unadjusted and adjusted for baseline characteristics. RESULTS: 241,360 patients underwent the following interventions; percutaneous coronary intervention(N = 177,556), coronary artery bypass grafting(N = 39,069), transcatheter aortic valve implantation(N = 11,819), aortic valve replacement(N = 8,028) and combined CABG and AVR(N = 4,888). The incidence of DM type I and II was 21.1%, 26.7%, 17.8%, 27.6% and 27% respectively. For all procedures, there are statistically significant differences between patients living with and without diabetes, adjusted for baseline characteristics, at the expense of patients with diabetes for 30-days mortality after PCI (OR = 1.68; p <.001); 120-days mortality after CABG (OR = 1.35; p <.001), AVR (OR = 1.5; p <.03) and CABG + AVR (OR = 1.42; p =.02); and 1-year mortality after CABG (OR = 1.43; p <.001), TAVI (OR = 1.21; p =.01) and PCI (OR = 1.68; p <.001). CONCLUSION: Patients with DM remain to have unfavourable outcomes compared to nondiabetic patients which calls for a critical reappraisal of existing care pathways aimed at diabetic patients within the cardiovascular field.
Asunto(s)
Puente de Arteria Coronaria , Enfermedad de la Arteria Coronaria , Diabetes Mellitus Tipo 1 , Diabetes Mellitus Tipo 2 , Intervención Coronaria Percutánea , Sistema de Registros , Reemplazo de la Válvula Aórtica Transcatéter , Humanos , Masculino , Femenino , Anciano , Estudios Retrospectivos , Resultado del Tratamiento , Intervención Coronaria Percutánea/mortalidad , Intervención Coronaria Percutánea/efectos adversos , Factores de Riesgo , Factores de Tiempo , Enfermedad de la Arteria Coronaria/mortalidad , Enfermedad de la Arteria Coronaria/terapia , Enfermedad de la Arteria Coronaria/cirugía , Persona de Mediana Edad , Medición de Riesgo , Anciano de 80 o más Años , Puente de Arteria Coronaria/efectos adversos , Puente de Arteria Coronaria/mortalidad , Países Bajos/epidemiología , Diabetes Mellitus Tipo 2/mortalidad , Diabetes Mellitus Tipo 2/diagnóstico , Diabetes Mellitus Tipo 2/complicaciones , Diabetes Mellitus Tipo 2/terapia , Reemplazo de la Válvula Aórtica Transcatéter/efectos adversos , Reemplazo de la Válvula Aórtica Transcatéter/mortalidad , Diabetes Mellitus Tipo 1/mortalidad , Diabetes Mellitus Tipo 1/diagnóstico , Diabetes Mellitus Tipo 1/complicaciones , Diabetes Mellitus Tipo 1/terapia , Incidencia , Enfermedad de la Válvula Aórtica/cirugía , Enfermedad de la Válvula Aórtica/mortalidad , Complicaciones Posoperatorias/mortalidad , Hospitales de Alto VolumenRESUMEN
The severe-acute-respiratory-syndrome-coronavirus-2 (SARS-CoV-2) is the causative agent of COVID-19, but host cell factors contributing to COVID-19 pathogenesis remain only partly understood. We identify the host metalloprotease ADAM17 as a facilitator of SARS-CoV-2 cell entry and the metalloprotease ADAM10 as a host factor required for lung cell syncytia formation, a hallmark of COVID-19 pathology. ADAM10 and ADAM17, which are broadly expressed in the human lung, cleave the SARS-CoV-2 spike protein (S) in vitro, indicating that ADAM10 and ADAM17 contribute to the priming of S, an essential step for viral entry and cell fusion. ADAM protease-targeted inhibitors severely impair lung cell infection by the SARS-CoV-2 variants of concern alpha, beta, delta, and omicron and also reduce SARS-CoV-2 infection of primary human lung cells in a TMPRSS2 protease-independent manner. Our study establishes ADAM10 and ADAM17 as host cell factors for viral entry and syncytia formation and defines both proteases as potential targets for antiviral drug development.
Asunto(s)
COVID-19 , SARS-CoV-2 , Proteína ADAM10/genética , Proteína ADAM17 , Secretasas de la Proteína Precursora del Amiloide/genética , Enzima Convertidora de Angiotensina 2 , Fusión Celular , Humanos , Pulmón , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Metaloproteasas , Glicoproteína de la Espiga del Coronavirus/genética , Glicoproteína de la Espiga del Coronavirus/metabolismo , Internalización del VirusRESUMEN
C3-symmetry is a type of star-shaped molecule consisting of a central core and three symmetrically attached chains. These molecules are used in drug discovery due to their unique three-fold rotational symmetry, which allows for specific binding interactions and improved molecular recognition. In this text, we provide an overview of synthetic approaches with C3-symmetry as a pharmaceutical tool: progress, challenges, and opportunities. C3-symmetric ligands offer both challenges and opportunities in drug design. Their unique symmetry can enhance binding interactions, but careful consideration of rigidity, synthetic complexity, and target compatibility is crucial. Further research and advancements in synthetic methods and modeling tools will likely drive their exploration in drug discovery, leading to the discovery of potent C3-symmetric ligands.
Asunto(s)
Diseño de Fármacos , Descubrimiento de Drogas , LigandosRESUMEN
Thienothiophene (TT) has received great attention in the fields of electronics and optoelectronics. Here we report a synthesis and characterization of fullerene-donor-fullerene triads linked to thieno[2,3-b]thiophene as a donor. The photophysical and electrochemical properties of the new dumbbells were investigated using UV-vis spectroscopy, fluorescence spectroscopy, cyclic voltammetry, and square wave voltammetry. The results showed that both compounds have higher LUMO energy levels than PC61BM, indicating that they can be used in photovoltaic applications. Furthermore, the powder was structurally and morphologically characterized via X-ray diffraction (XRD) and scanning electron microscopy (SEM). The SEM revealed the morphological characterization of the two derivatives as globular and urchin-like supramolecular assemblies.
RESUMEN
Trillium govanianum is a high-value medicinal herb, having multifunctional traditional and culinary uses. The present investigation was carried out to evaluate the phytochemical, biological and toxicological parameters of the T. govanianum Wall. ex D. Don (Family: Trilliaceae) roots collected from Azad Kashmir, Pakistan. Phytochemical profiling was achieved by determining total bioactive contents (total phenolic and flavonoid contents) and UHPLC-MS analysis. For biological evaluation, antioxidant activities (DPPH, ABTS, FRAP, CUPRAC, phosphomolybdenum, and metal chelation assays) and enzyme inhibition activities (against AChE, BChE, glucosidase, amylase, and tyrosinase) were performed. Moreover, cytotoxicity was assessed against three human carcinoma cell lines (MDA-MB-231, CaSki, and DU-145). The tested extract was found to contain higher total phenolics (7.56â mg GAE/g dry extract) as compared to flavonoid contents (0.45â mg RE/g dry extract). Likewise, for the antioxidant activity, higher CUPRAC activity was noted with 39.84â mg TE/g dry extract values. In the case of enzyme assays, higher activity was pointed out against the cholinesterase, glucosidase and tyrosinase enzymes. The plant extract displayed significant cytotoxicity against the cell lines examined. Moreover, the in-silico studies highlighted the interaction between the important phytochemicals and tested enzymes. To conclude, the assessed biological activity and the existence of bioactive phytochemicals in the studied plant extract may pave the way for the development of novel pharmaceuticals.
Asunto(s)
Trillium , Humanos , Trillium/química , Monofenol Monooxigenasa , Antioxidantes/farmacología , Antioxidantes/química , Flavonoides/farmacología , Flavonoides/análisis , Extractos Vegetales/farmacología , Extractos Vegetales/química , Glucosidasas , Fitoquímicos/químicaRESUMEN
Justicia vahliiRoth. is an important wild medicinal food plant traditionally used for treating inflammation and various common ailments. This study investigated the chemical composition, antioxidant, enzyme inhibition and toxicity profiles of n-hexane (nHEJv) and chloroform (CEJv) extracts of J. vahlii. Moreover, the effect of the extracts was evaluated on CCl4 induced liver injury. The total phenolic and flavonoid contents were present in both extracts in significant amount. The UPLC-Q-TOF-MS and GC-MS profiling of CEJv tentatively identified several important phytocompounds. The CEJv extract was comparatively more active for antioxidant activity and α-amylase inhibition, whereas the nHEJv extract presented higher inhibition potential against urease, tyrosinase, and α-glucosidase enzymes. Similarly, the in-silicostudy of four major compounds, i. e., 1-acetoxypinoresinol, 3-hydroxysebacic acid, nortrachelogenin, and viscidulin-III have shown a good docking score against the clinically significant enzymes. The acute oral toxicity and brine shrimp lethality assaysrevealed the extracts as non-toxic. The CCl4 treated animals showed a geared depletion of various antioxidant enzymes which were significantly reversed with the treatment of the extracts. Overall, the study's findings revealed J. vahliiwith antioxidant mediated hepatoprotective and enzyme inhibition potential and warrant further research on isolation of the bioactive compounds.
RESUMEN
A fast and sample cleanup approach for fluoxetine in human plasma was developed using protein precipitation coupled with LC-MS-MS. Samples were treated with methanol prior to LC-MS-MS analysis. Chromatographic separation was performed on a reverse phase column with an isocratic mobile phase of methanol and 10 mM ammonium formate pH acidified with formic acid (80:20, v/v) at a flow rate of 0.2 mL/min. The run time was 4 min. Mass parameters were optimized to monitor transitions at m/z [M + H]+ 310 > > 148 for fluoxetine and m/z [M + H]+ 315.1 > > 153 for fluoxetine-d5 as an internal standard. The lower limit of quantification and the dynamic range were 0.25 and 0.25-50 ng/mL, respectively. Linearity was good for intra-day and inter-day validations (R2 = 0.999). The matrix effect was acceptable with CV% < 15 and accuracy% < 15. The hemolytic effect was negligible. Fluoxetine was stable in human plasma for 48 h at room temperature (25 °C), for 12 months frozen at -25 °C, for 48 h in an auto-sampler at 6 °C, and for three freeze/thaw cycles. The validated method was applied in a pharmacokinetic study to determine the concentration of fluoxetine in plasma samples. The study provides a fast and simple bioanalytical method for routine analysis and may be particularly useful for bioequivalence studies. The method was successfully applied to a pharmacokinetic study of fixed-dose fluoxetine in nine healthy volunteers.
Asunto(s)
Fluoxetina , Espectrometría de Masas en Tándem , Fluoxetina/farmacocinética , Fluoxetina/sangre , Humanos , Espectrometría de Masas en Tándem/métodos , Cromatografía Liquida/métodos , Reproducibilidad de los Resultados , Límite de Detección , Masculino , Cromatografía Líquida con Espectrometría de MasasRESUMEN
PURPOSE: To report a case series of seven patients with late presentation of orbital/subperiosteal abscess following oral treatment of orbital cellulitis. METHODS: A retrospective case series of all patients presented with orbital abscess following oral treatment of orbital cellulitis from two tertiary-care eye centres in Riyadh, Saudi Arabia, was conducted. Demographic profiles, risk factors, initial clinical presentation, management regimens, and final outcome were analysed. RESULTS: Patients presented mainly with proptosis and limitation of extraocular motility without external ophthalmic inflammatory signs. Most patients needed surgical evacuation despite the appropriate initiation of intravenous antibiotics following presentation to our hospitals. CONCLUSION: Treating orbital cellulitis with oral antibiotics may lead to delayed presentation of orbital abscess without external ophthalmic inflammatory signs.
Asunto(s)
Exoftalmia , Celulitis Orbitaria , Humanos , Celulitis Orbitaria/diagnóstico , Antibacterianos/uso terapéutico , Absceso/diagnóstico por imagen , Absceso/tratamiento farmacológico , Estudios Retrospectivos , Celulitis (Flemón)/tratamiento farmacológico , Celulitis (Flemón)/etiologíaRESUMEN
Based on previous developments of our research programs in trying to find new compounds with multiple biological targets such as antioxidant, anti-diabetic, anti-Alzheimer's, and anti-arthritic agents. In the context, a novel series of sulfonamide derivatives based on the pyrazole or pyridine moieties 3a, b, 7-9, 11-13, 15a, b, and 16 were synthesized from amine compounds with sulfonyl chloride derivatives. The structures of sulfonamide derivatives were elucidated via spectroscopy (1H and 13C NMR). The sulfonamide derivatives were biologically assessed in vitro for their anti-diabetic (α-amylase and α-glucosidase inhibition) and anti-Alzheimer's (acetylcholinesterase inhibition) activities. The biological results revealed that compound 15a is a powerful enzyme inhibitor for α-amylase and α-glucosidase. Also, compound 15b demonstrated inhibitor activity against the acetylcholinesterase enzyme. The structure-activity relationship study of sulfonamide derivatives was accomplished. Furthermore, complementary in silico molecular properties, drug-likeness, ADMET prediction, and surface properties of the two more powerful derivatives 15a and 15b were fulfilled and computed. These studies recommend 15a and 15b as candidates with modifications in their structures before the in vivo assays.
RESUMEN
In the present work, we reported the synthesis of Schiff bases from 4-phenoxy-5-sulfamoylbenzoic acid motif. The reaction was carried out by substitution of different aldehyde and ketones at sulfamoyl group of sulfamoylbenzoic acid. The generated substituted products (4a-4i) possessed potent structure activity relationship and exhibited drug like properties. The structures of synthesized compounds were characterized on the basis of FT-IR, 1H NMR, 13C NMR and mass spectroscopic data. The effects of synthesized products were investigated on urease enzyme through anti-urease enzyme inhibition assay (Weather burn method). These compounds were further evaluated for antibacterial potential. The Rationale behind the assessment of antibacterial activity was to investigate the synthesized compound's dual mode action against urease and virulent bacterial strains in order to develop a lead candidate for the treatment of GIT diseases such as gastric and peptic ulcers, as well as hepatic encephalopathy. The synthesized derivatives have outstanding anti-urease and antibacterial action, as is evident from in vitro and in silico studies. As a result, these compounds (3-(butylamino)-4-phenoxy-5-sulfamoylbenzoic acid; 4a-4i) might be explored further as a potential lead for the development of potent inhibitors in the future.
Asunto(s)
Bases de Schiff , Ureasa , Aldehídos , Antibacterianos/farmacología , Bacterias/metabolismo , Benzoatos , Colorantes/farmacología , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/farmacología , Cetonas/farmacología , Simulación del Acoplamiento Molecular , Estructura Molecular , Bases de Schiff/química , Espectroscopía Infrarroja por Transformada de Fourier , Relación Estructura-Actividad , Ureasa/química , Ureasa/metabolismoRESUMEN
Choosing reliable recipient vessels is crucial for successful free flap reconstruction of lower extremity defects, especially in patients with ischemic vasculopathy. This report describes our experience with the intraoperative use of indocyanine green angiography (ICGA) for selecting recipient vessels in lower extremity free flap reconstruction cases. Three patients with lower extremity defects and ischemic vasculopathy underwent free flap reconstruction. Intraoperatively, the candidate vessels were evaluated using ICGA. In the first case, a 10 × 6 cm defect on the anterior side of the lower third of the leg caused by minor trauma and associated with peripheral arterial occlusive disease was reconstructed using a super-thin anterolateral thigh flap based on one perforator. In the second case, a 12 × 8 cm defect on the posterior side of the right lower leg caused by a dog bite and associated with severe atherosclerosis throughout all three major vessels in the lower leg was reconstructed using a muscle-sparing latissimus dorsi myocutaneous flap. In the third case, a 13.5 × 5.5 cm defect on the right lateral malleolar region, where the peroneus longus tendon was exposed due to Buerger's disease, was reconstructed using a one perforator-based super-thin anterolateral thigh flap. In all cases, ICGA was used to evaluate the functionality of the candidate recipient vessels. In two cases, the candidate vessels showed acceptable blood flow, and the operations proceeded as planned. In the third case, the planned vessels of posterior tibial vessels were not identified to have sufficient blood flow, and one of their branches showing enhancement in ICGA was selected and used as a recipient vessel. All flaps survived completely. No adverse events occurred during the follow-up period of postoperative 3 months. Our results suggest that ICGA may be a valuable diagnostic tool for evaluating the quality of candidate recipient vessels in cases where their functionality cannot be guaranteed with conventional imaging modalities.
Asunto(s)
Colgajo Perforante , Procedimientos de Cirugía Plástica , Traumatismos de los Tejidos Blandos , Animales , Perros , Verde de Indocianina , Extremidad Inferior/cirugía , Muslo/cirugía , Colgajo Perforante/trasplante , Angiografía , Traumatismos de los Tejidos Blandos/cirugía , Resultado del Tratamiento , Trasplante de PielRESUMEN
Several kinds of anticancer drugs are presently commercially accessible, but low efficacy, solubility, and toxicity have reduced the overall therapeutic indices. Thus, the search for promising anticancer drugs continues. The interactions of numerous essential anticancer drugs with DNA are crucial to their biological functions. Here, the anticancer effects of N-ethyl toluene-4-sulphonamide (8a) and 2,5-Dichlorothiophene-3-sulphonamide (8b) on cell lines from breast and cervical cancer were investigated. The study also compared how these substances interacted with the hearing sperm DNA. The most promising anticancer drug was identified as 2,5-Dichlorothiophene-3-sulfonamide (8b), which showed GI50 of 7.2 ± 1.12 µM, 4.62 ± 0.13 µM and 7.13 ± 0.13 µM against HeLa, MDA-MB231 and MCF-7 cells, respectively. Moreover, it also exhibited significant electrostatic and non-electrostatic contributions to the binding free energy. The work utilized computational techniques, such as molecular docking and molecular dynamic (MD) simulations, to demonstrate the strong cytotoxicity of 2,5-Dichlorothiophene-3-sulfamide (8b) in comparison to standard Doxorubicin and cisplatin, respectively. Molecular docking experiments provided additional support for a role for the minor groove in the binding of the 2,5-Dichlorothiophene-3-sulfamide (8b)-DNA complex. The molecular docking studies and MD simulation showed that both compounds revealed comparable inhibitory potential against standard Doxorubicin and cisplatin. This study has the potential to lead to the discovery of new bioactive compounds for use in cancer treatment, including metallic and non-metallic derivatives of 2,5-Dichlorothiophene-3-sulfonamide (8b). It also emphasizes the worth of computational approaches in the development of new drugs and lays the groundwork for future research.
Asunto(s)
Antineoplásicos , Cisplatino , Masculino , Humanos , Cisplatino/farmacología , Simulación del Acoplamiento Molecular , Semen/metabolismo , Antineoplásicos/química , Células HeLa , Doxorrubicina/farmacología , ADN/metabolismo , Desarrollo de Medicamentos , Sulfonamidas/farmacología , Relación Estructura-Actividad , Estructura Molecular , Ensayos de Selección de Medicamentos Antitumorales , Proliferación Celular , Línea Celular TumoralRESUMEN
The presence of the p-aryl/cyclohexyl ring in the N-(4-aryl/cyclohexyl)-2-(pyridine-4-yl carbonyl) hydrazine carbothioamide derivative (2C) is reported to enhance the antifungal properties when compared to those of itraconazole. Serum albumins present in plasma bind and transport ligands, including pharmaceuticals. This study explored 2C interactions with BSA using spectroscopic methods such as fluorescence and UV-visible spectroscopy. In order to acquire a deeper comprehension of how BSA interacts with binding pockets, a molecular docking study was carried out. The fluorescence of BSA was quenched by 2C via a static quenching mechanism since a decrease in quenching constants was observed from 1.27 × 105 to 1.14 × 105. Thermodynamic parameters indicated hydrogen and van der Waals forces responsible for the BSA-2C complex formation with binding constants ranging between 2.91 × 105 and 1.29 × 105, which suggest a strong binding interaction. Site marker studies displayed that 2C binds to BSA's subdomains IIA and IIIA. Molecular docking studies were conducted to further comprehend the molecular mechanism of the BSA-2C interaction. The toxicity of 2C was predicted by Derek Nexus software. Human and mammalian carcinogenicity and skin sensitivity predictions were associated with a reasoning level of equivocal, inferring 2C to be a potential drug candidate.
Asunto(s)
Antifúngicos , Albúmina Sérica Bovina , Animales , Humanos , Albúmina Sérica Bovina/química , Simulación del Acoplamiento Molecular , Hidrazinas , Termodinámica , Piridinas , Sitios de Unión , Espectrometría de Fluorescencia , Unión Proteica , Espectrofotometría Ultravioleta , Dicroismo Circular , Mamíferos/metabolismoRESUMEN
This study systematically investigates the molecular structure and electronic properties of 2-methoxy-4,6-diphenylnicotinonitrile, employing X-ray diffraction (XRD) and sophisticated computational methodologies. XRD findings validate the compound's orthorhombic crystallization in the P21212 space group, composed of a pyridine core flanked by two phenyl rings. Utilizing the three-dimensional Hirshfeld surface, the research decodes the molecule's spatial attributes, further supported by exhaustive statistical assessments. Key interactions, such as π-π stacking and Hâ¯X contacts, are spotlighted, underscoring their role in the crystal's inherent stability and characteristics. Energy framework computations and density functional theory (DFT) analyses elucidate the prevailing forces in the crystal and reveal geometric optimization facets and molecular reactivity descriptors. Emphasis is given to the exploration of frontier molecular orbitals (FMOs), aromaticity, and π-π stacking capacities. The research culminates in distinguishing electron density distributions, aromatic nuances, and potential reactivity hotspots, providing a holistic view of the compound's structural and electronic landscape. Concurrently, molecular docking investigates its interaction with the lipoprotein-associated phospholipase A2 protein. Notably, the compound showcases significant interactions with the protein's active site. Molecular dynamics simulations reveal the compound's influence on protein stability and flexibility. Although the molecule exhibits strong inhibitory potential against Lp-PLA2, its drug development prospects face challenges related to solubility and interactions with drug transport proteins.
RESUMEN
Flavonoids are secondary metabolites that are non-essential for plant growth or survival, and they also provide numerous health benefits to humans. They are antioxidants that shield plants from the ill effects of ultraviolet light, pests, and diseases. They are beneficial to health for several reasons, including lowering inflammation, boosting cardiovascular health, and lowering cancer risk. This study looked into the physicochemical features of these substances to determine the potential pharmacological pathways involved in their protective actions. Potential targets responsible for the protective effects of quercetin, naringenin, and rutin were identified with SwissADME. The associated biological processes and protein-protein networks were analyzed by using the GeneMANIA, Metascape, and STRING servers. All the flavonoids were predicted to be orally bioavailable, with more than 90% targets as enzymes, including kinases and lyases, and with common targets such as NOS2, CASP3, CASP9, CAT, BCL2, TNF, and HMOX1. TNF was shown to be a major target in over 250 interactions. To extract the "biological meanings" from the MCODE networks' constituent parts, a GO enrichment analysis was performed on each one. The most important transcription factors in gene regulation were RELA, NFKB1, PPARG, and SP1. Treatment with quercetin, naringenin, or rutin increased the expression and interaction of the microRNAs' hsa-miR-34a-5p, hsa-miR-30b-5p, hsa-let-7a-5p, and hsa-miR-26a-1-3p. The anticancer effects of hsa-miR-34a-5p have been experimentally confirmed. It also plays a critical role in controlling other cancer-related processes such as cell proliferation, apoptosis, EMT, and metastasis. This study's findings might lead to a deeper comprehension of the mechanisms responsible for flavonoids' protective effects and could present new avenues for exploration.
Asunto(s)
MicroARNs , Neoplasias , Humanos , MicroARNs/genética , MicroARNs/metabolismo , Quercetina/farmacología , Rutina/farmacología , Redes Reguladoras de Genes , Neoplasias/tratamiento farmacológico , Neoplasias/genética , Perfilación de la Expresión Génica/métodosRESUMEN
Osteoarthritis is a substantial burden for patients with the disease. The known medications for the disease target the mitigation of the disease's symptoms. So, drug development for the management of osteoarthritis represents an important challenge in the medical field. This work is based on the development of a new benzofuran-pyrazole-pyridine-based compound 8 with potential anti-inflammatory and anti-osteoarthritis properties. Microanalytical and spectral data confirmed the chemical structure of compound 8. The biological assays indicated that compound 8 produces multifunctional activity as an anti-osteoarthritic candidate via inhibition of pro-inflammatory mediators, including RANTES, CRP, COMP, CK, and LPO in OA rats. Histopathological and pharmacokinetic studies confirmed the safety profile of the latter molecule. Accordingly, compound 8 is considered a promising anti-osteoarthritis agent and deserves deeper investigation in future trials.
Asunto(s)
Benzofuranos , Osteoartritis , Humanos , Ratas , Animales , Osteoartritis/tratamiento farmacológico , Osteoartritis/patología , Antiinflamatorios/farmacología , Antiinflamatorios/uso terapéutico , Antiinflamatorios/química , Pirazoles/farmacología , Pirazoles/uso terapéutico , Benzofuranos/farmacología , Benzofuranos/uso terapéutico , Piridinas/farmacología , Piridinas/uso terapéuticoRESUMEN
Cyclin-dependent kinases (CDKs) are promising targets in chemotherapy. In this study, we report a series of 2-anilinopyrimidine derivatives with CDK inhibitory activity. Twenty-one compounds were synthesized and their CDK inhibitory and cytotoxic activities were evaluated. The representative compounds demonstrate potent antiproliferative activities toward different solid cancer cell lines and provide a promising strategy for the treatment of malignant tumors. Compound 5f was the most potent CDK7 inhibitor (IC50 = 0.479 µM), compound 5d was the most potent CDK8 inhibitor (IC50 = 0.716 µM), and compound 5b was the most potent CDK9 inhibitor (IC50 = 0.059 µM). All the compounds satisfied the Lipinski's rule of five (molecular weight < 500 Da, number of hydrogen bond acceptors <10, and octanol-water partition coefficient and hydrogen bond donor values below 5). Compound 5j is a good candidate for lead optimization because it has a non-hydrogen atom (N) of 23, an acceptable ligand efficiency value of 0.38673, and an acceptable ligand lipophilic efficiency value of 5.5526. The synthesized anilinopyrimidine derivatives have potential as anticancer agents.
Asunto(s)
Antineoplásicos , Neoplasias , Humanos , Estructura Molecular , Relación Estructura-Actividad , Ligandos , Simulación del Acoplamiento Molecular , Antineoplásicos/química , Quinasas Ciclina-Dependientes , Proliferación Celular , Ensayos de Selección de Medicamentos Antitumorales , Diseño de Fármacos , Línea Celular TumoralRESUMEN
Addressing obesity is a critical health concern of the century, necessitating urgent attention. L-carnitine (LC), an essential water-soluble compound, plays a pivotal role in lipid breakdown via ß-oxidation and facilitates the transport of long-chain fatty acids across mitochondrial membranes. However, LC's high hydrophilicity poses challenges to its diffusion through bilayers, resulting in limited bioavailability, a short half-life, and a lack of storage within the body, mandating frequent dosing. In our research, we developed LC-loaded nanoparticle lipid carriers (LC-NLCs) using economically viable and tissue-localized nanostructured lipid carriers (NLCs) to address these limitations. Employing the central composite design model, we optimized the formulation, employing the high-pressure homogenization (HPH) method and incorporating Poloxamer® 407 (surfactant), Compritol® 888 ATO (solid lipid), and oleic acid (liquid oil). A comprehensive assessment of nanoparticle physical attributes was performed, and an open-field test (OFT) was conducted on rats. We employed immunofluorescence assays targeting CRP and PPAR-γ, along with an in vivo rat study utilizing an isolated fat cell line to assess adipogenesis. The optimal formulation, with an average size of 76.4 ± 3.4 nm, was selected due to its significant efficacy in activating the PPAR-γ pathway. Our findings from the OFT revealed noteworthy impacts of LC-NLC formulations (0.1 mg/mL and 0.2 mg/mL) on adipocyte cells, surpassing regular L-carnitine formulations' effects (0.1 mg/mL and 0.2 mg/mL) by 169.26% and 156.63%, respectively (p < 0.05).
Asunto(s)
Nanopartículas , Nanoestructuras , Ratas , Animales , Lípidos/química , Carnitina/farmacología , Portadores de Fármacos/química , Receptores Activados del Proliferador del Peroxisoma , Nanopartículas/química , Nanoestructuras/química , Tamaño de la PartículaRESUMEN
In continuation of our research programs for the discovery, production, and development of the pharmacological activities of molecules for various disease treatments, Schiff bases and pyrazole scaffold have a broad spectrum of activities in biological applications. In this context, this manuscript aims to evaluate and study Schiff base-pyrazole molecules as a new class of antioxidant (total antioxidant capacity, iron-reducing power, scavenging activity against DPPH, and ABTS radicals), anti-diabetic (α-amylase% inhibition), anti-Alzheimer's (acetylcholinesterase% inhibition), and anti-arthritic (protein denaturation% and proteinase enzyme% inhibitions) therapeutics. Therefore, the Schiff bases bearing pyrazole scaffold (22a, b and 23a, b) were designed and synthesized for evaluation of their antioxidant, anti-diabetic, anti-Alzheimer's, and anti-arthritic properties. The results for compound 22b demonstrated significant antioxidant, anti-diabetic (α-amylase% inhibition), and anti-Alzheimer's (ACE%) activities, while compound 23a demonstrated significant anti-arthritic activity. Prediction of in silico bioinformatics analysis (physicochemical properties, bioavailability radar, drug-likeness, and medicinal chemistry) of the target derivatives (22a, b and 23a, b) was performed. The molecular lipophilicity potential (MLP) of the derivatives 22a, b and 23a, b was measured to determine which parts of the surface are hydrophobic and which are hydrophilic. In addition, the molecular polar surface area (PSA) was measured to determine the polar surface area and the non-polar surface area of the derivatives 22a, b and 23a, b. This study could be useful to help pharmaceutical researchers discover a new series of potent agents that may act as an antioxidant, anti-diabetic, anti-Alzheimer, and anti-arthritic.