Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
Biochem J ; 478(1): 41-59, 2021 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-33196080

RESUMEN

Flocculation has been recognized for hundreds of years as an important phenomenon in brewing and wastewater treatment. However, the underlying molecular mechanisms remain elusive. The lack of a distinct phenotype to differentiate between slow-growing mutants and floc-forming mutants prevents the isolation of floc-related gene by conventional mutant screening. To overcome this, we performed a two-step Escherichia coli mutant screen. The initial screen of E. coli for mutants conferring floc production during high salt treatment yielded a mutant containing point mutations in 61 genes. The following screen of the corresponding single-gene mutants identified two genes, mrcB, encoding a peptidoglycan-synthesizing enzyme and cpxA, encoding a histidine kinase of a two-component signal transduction system that contributed to salt tolerance and flocculation prevention. Both single mutants formed flocs during high salt shock, these flocs contained cytosolic proteins. ΔcpxA exhibited decreased growth with increasing floc production and addition of magnesium to ΔcpxA suppressed floc production effectively. In contrast, the growth of ΔmrcB was inconsistent under high salt conditions. In both strains, flocculation was accompanied by the release of membrane vesicles containing inner and outer membrane proteins. Of 25 histidine kinase mutants tested, ΔcpxA produced the highest amount of proteins in floc. Expression of cpxP was up-regulated by high salt in ΔcpxA, suggesting that high salinity and activation of CpxR might promote floc formation. The finding that ΔmrcB or ΔcpxA conferred floc production indicates that cell envelope stress triggered by unfavorable environmental conditions cause the initiation of flocculation in E. coli.


Asunto(s)
Membrana Celular/metabolismo , Pared Celular/genética , Proteínas de Escherichia coli/metabolismo , Escherichia coli/genética , Proteínas de Unión a las Penicilinas/metabolismo , Peptidoglicano Glicosiltransferasa/metabolismo , Proteínas Quinasas/metabolismo , Tolerancia a la Sal/genética , D-Ala-D-Ala Carboxipeptidasa de Tipo Serina/metabolismo , Proteínas Bacterianas/metabolismo , Pared Celular/metabolismo , Citosol/metabolismo , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Floculación , Proteínas de la Membrana/metabolismo , Proteínas de Unión a las Penicilinas/genética , Peptidoglicano Glicosiltransferasa/genética , Mutación Puntual , Proteínas Quinasas/genética , D-Ala-D-Ala Carboxipeptidasa de Tipo Serina/genética
2.
J Biol Chem ; 294(33): 12281-12292, 2019 08 16.
Artículo en Inglés | MEDLINE | ID: mdl-31256002

RESUMEN

Mechanosensitive channels play an important role in the adaptation of cells to hypo-osmotic shock. Among members of this channel family in Escherichia coli, the exact function and physiological role of the mechanosensitive channel homolog YbdG remain unclear. Characterization of YbdG's physiological role has been hampered by its lack of measurable transport activity. Using a nitrosoguanidine mutagenesis-aided screen in combination with next-generation sequencing, here we isolated a mutant with a point mutation in ybdG This mutation (resulting in a I167T change) conferred sensitivity to high osmotic stress, and the mutant cells differed from WT cells in morphology during hyperosmotic stress at alkaline pH. Interestingly, unlike the cells containing the I167T variant, a null-ybdG mutant did not exhibit this sensitivity and phenotype. Although I167T was located near the putative ion-conducting pore in a transmembrane region of YbdG, no change in ion channel activities of YbdG-I167T was detected. Of note, introduction of the WT C-terminal cytosolic region of YbdG into the I167T variant complemented the osmo-sensitive phenotype. Co-precipitation of proteins interacting with the C-terminal YbdG region led to the isolation of HldD and FbaA, whose overexpression in cells containing the YbdG-I167T variant partially rescued the osmo-sensitive phenotype. This study indicates that YbdG functions as a component of a mechanosensing system that transmits signals triggered by external osmotic changes to intracellular factors. The cellular role of YbdG uncovered here goes beyond its predicted function as an ion or solute transport protein.


Asunto(s)
Adaptación Fisiológica , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Canales Iónicos/metabolismo , Mecanotransducción Celular , Presión Osmótica , Sustitución de Aminoácidos , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Canales Iónicos/genética , Mutación Missense , Dominios Proteicos
3.
Plant Cell Physiol ; 59(8): 1568-1580, 2018 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-29635388

RESUMEN

Regulation of stomatal aperture is essential for plant growth and survival in response to environmental stimuli. Opening of stomata induces uptake of CO2 for photosynthesis and transpiration, which enhances uptake of nutrients from roots. Light is the most important stimulus for stomatal opening. Under drought stress, the plant hormone ABA induces stomatal closure to prevent water loss. However, the molecular mechanisms of stomatal movements are not fully understood. In this study, we screened chemical libraries to identify compounds that affect stomatal movements in Commelina benghalensis and characterize the underlying molecular mechanisms. We identified nine stomatal closing compounds (SCL1-SCL9) that suppress light-induced stomatal opening by >50%, and two compounds (temsirolimus and CP-100356) that induce stomatal opening in the dark. Further investigations revealed that SCL1 and SCL2 had no effect on autophosphorylation of phototropin or the activity of the inward-rectifying plasma membrane (PM) K+ channel, KAT1, but suppressed blue light-induced phosphorylation of the penultimate residue, threonine, in PM H+-ATPase, which is a key enzyme for stomatal opening. SCL1 and SCL2 had no effect on ABA-dependent responses, including seed germination and expression of ABA-induced genes. These results suggest that SCL1 and SCL2 suppress light-induced stomatal opening at least in part by inhibiting blue light-induced activation of PM H+-ATPase, but not by the ABA signaling pathway. Interestingly, spraying leaves onto dicot and monocot plants with SCL1 suppressed wilting of leaves, indicating that inhibition of stomatal opening by these compounds confers tolerance to drought stress in plants.


Asunto(s)
Commelina/metabolismo , Luz , Reguladores del Crecimiento de las Plantas/farmacología , Estomas de Plantas/efectos de los fármacos , Ácido Abscísico/farmacología , Commelina/efectos de los fármacos , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , ATPasas de Translocación de Protón/metabolismo , Transducción de Señal/efectos de los fármacos
4.
New Phytol ; 218(4): 1504-1521, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29498046

RESUMEN

N-myristoylation and S-acylation promote protein membrane association, allowing regulation of membrane proteins. However, how widespread this targeting mechanism is in plant signaling processes remains unknown. Through bioinformatics analyses, we determined that among plant protein kinase families, the occurrence of motifs indicative for dual lipidation by N-myristoylation and S-acylation is restricted to only five kinase families, including the Ca2+ -regulated CDPK-SnRK and CBL protein families. We demonstrated N-myristoylation of CDPK-SnRKs and CBLs by incorporation of radiolabeled myristic acid. We focused on CPK6 and CBL5 as model cases and examined the impact of dual lipidation on their function by fluorescence microscopy, electrophysiology and functional complementation of Arabidopsis mutants. We found that both lipid modifications were required for proper targeting of CBL5 and CPK6 to the plasma membrane. Moreover, we identified CBL5-CIPK11 complexes as phosphorylating and activating the guard cell anion channel SLAC1. SLAC1 activation by CPK6 or CBL5-CIPK11 was strictly dependent on dual lipid modification, and loss of CPK6 lipid modification prevented functional complementation of cpk3 cpk6 guard cell mutant phenotypes. Our findings establish the general importance of dual lipid modification for Ca2+ signaling processes, and demonstrate their requirement for guard cell anion channel regulation.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimología , Proteínas de Unión al Calcio/metabolismo , Proteínas Quinasas Dependientes de Calcio-Calmodulina/metabolismo , Calcio/metabolismo , Canales Iónicos/metabolismo , Proteínas de la Membrana/metabolismo , Ácido Mirístico/metabolismo , Procesamiento Proteico-Postraduccional , Ácido Abscísico/farmacología , Acilación , Secuencias de Aminoácidos , Animales , Aniones , Arabidopsis/efectos de los fármacos , Membrana Celular/efectos de los fármacos , Membrana Celular/metabolismo , Lípidos/química , Modelos Biológicos , Oocitos/efectos de los fármacos , Oocitos/metabolismo , Hojas de la Planta/efectos de los fármacos , Hojas de la Planta/enzimología , Estomas de Plantas/citología , Estomas de Plantas/efectos de los fármacos , Estomas de Plantas/fisiología , Unión Proteica/efectos de los fármacos , Procesamiento Proteico-Postraduccional/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Nicotiana/enzimología , Xenopus
5.
Biosci Biotechnol Biochem ; 81(2): 249-255, 2017 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-27760496

RESUMEN

Jasmonates are major plant hormones involved in wounding responses. Systemic wounding responses are induced by an electrical signal derived from damaged leaves. After the signaling, jasmonic acid (JA) and jasmonoyl-l-isoleucine (JA-Ile) are translocated from wounded to undamaged leaves, but the molecular mechanism of the transport remains unclear. Here, we found that a JA-Ile transporter, GTR1, contributed to these translocations in Arabidopsis thaliana. GTR1 was expressed in and surrounding the leaf veins both of wounded and undamaged leaves. Less accumulations and translocation of JA and JA-Ile were observed in undamaged leaves of gtr1 at 30 min after wounding. Expressions of some genes related to wound responses were induced systemically in undamaged leaves of gtr1. These results suggested that GTR1 would be involved in the translocation of JA and JA-Ile in plant and may be contributed to correct positioning of JA and JA-Ile to attenuate an excessive wound response in undamaged leaves.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Ciclopentanos/metabolismo , Isoleucina/análogos & derivados , Proteínas de Transporte de Monosacáridos/metabolismo , Oxilipinas/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Transporte Biológico , Regulación de la Expresión Génica de las Plantas , Isoleucina/metabolismo , Proteínas de Transporte de Monosacáridos/genética , Hojas de la Planta/genética , Hojas de la Planta/metabolismo , Transporte de Proteínas
6.
Cell Mol Life Sci ; 71(21): 4275-83, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-24770793

RESUMEN

Two-pore channel proteins (TPC) encode intracellular ion channels in both animals and plants. In mammalian cells, the two isoforms (TPC1 and TPC2) localize to the endo-lysosomal compartment, whereas the plant TPC1 protein is targeted to the membrane surrounding the large lytic vacuole. Although it is well established that plant TPC1 channels activate in a voltage- and calcium-dependent manner in vitro, there is still debate on their activation under physiological conditions. Likewise, the mode of animal TPC activation is heavily disputed between two camps favoring as activator either nicotinic acid adenine dinucleotide phosphate (NAADP) or the phosphoinositide PI(3,5)P2. Here, we investigated TPC current responses to either of these second messengers by whole-vacuole patch-clamp experiments on isolated vacuoles of Arabidopsis thaliana. After expression in mesophyll protoplasts from Arabidopsis tpc1 knock-out plants, we detected the Arabidopsis TPC1-EGFP and human TPC2-EGFP fusion proteins at the membrane of the large central vacuole. Bath (cytosolic) application of either NAADP or PI(3,5)P2 did not affect the voltage- and calcium-dependent characteristics of AtTPC1-EGFP. By contrast, PI(3,5)P2 elicited large sodium currents in hTPC2-EGFP-containing vacuoles, while NAADP had no such effect. Analogous results were obtained when PI(3,5)P2 was applied to hTPC2 expressed in baker's yeast giant vacuoles. Our results underscore the fundamental differences in the mode of current activation and ion selectivity between animal and plant TPC proteins and corroborate the PI(3,5)P2-mediated activation and Na(+) selectivity of mammalian TPC2.


Asunto(s)
Canales de Calcio/metabolismo , Fosfatos de Fosfatidilinositol/química , Antibacterianos/química , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Transporte Biológico/efectos de los fármacos , Calcio/metabolismo , Citosol/metabolismo , Endosomas/efectos de los fármacos , Endosomas/metabolismo , Proteínas Fluorescentes Verdes/metabolismo , Humanos , Ligandos , Lisosomas/efectos de los fármacos , Lisosomas/metabolismo , Neomicina/química , Técnicas de Placa-Clamp , Isoformas de Proteínas/metabolismo , Verapamilo/química , Zinc/química
7.
J Biol Chem ; 288(21): 15303-17, 2013 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-23553631

RESUMEN

Multimodal activation by various stimuli is a fundamental characteristic of TRP channels. We identified a fungal TRP channel, TRPGz, exhibiting activation by hyperosmolarity, temperature increase, cytosolic Ca(2+) elevation, membrane potential, and H2O2 application, and thus it is expected to represent a prototypic multimodal TRP channel. TRPGz possesses a cytosolic C-terminal domain (CTD), primarily composed of intrinsically disordered regions with some regulatory modules, a putative coiled-coil region and a basic residue cluster. The CTD oligomerization mediated by the coiled-coil region is required for the hyperosmotic and temperature increase activations but not for the tetrameric channel formation or other activation modalities. In contrast, the basic cluster is responsible for general channel inhibition, by binding to phosphatidylinositol phosphates. The crystal structure of the presumed coiled-coil region revealed a tetrameric assembly in an offset spiral rather than a canonical coiled-coil. This structure underlies the observed moderate oligomerization affinity enabling the dynamic assembly and disassembly of the CTD during channel functions, which are compatible with the multimodal regulation mediated by each functional module.


Asunto(s)
Proteínas Fúngicas/química , Gibberella/química , Canales Catiónicos TRPC/química , Calcio/química , Calcio/metabolismo , Cristalografía por Rayos X , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Gibberella/genética , Gibberella/metabolismo , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Relación Estructura-Actividad , Canales Catiónicos TRPC/genética , Canales Catiónicos TRPC/metabolismo
8.
Sci Adv ; 9(22): eadg5495, 2023 06 02.
Artículo en Inglés | MEDLINE | ID: mdl-37267352

RESUMEN

Salinity stress can greatly reduce seed production because plants are especially sensitive to salt during their reproductive stage. Here, we show that the sodium ion transporter AtHKT1;1 is specifically expressed around the phloem and xylem of the stamen in Arabidopsis thaliana to prevent a marked decrease in seed production caused by salt stress. The stamens of AtHKT1;1 mutant under salt stress overaccumulate Na+, limiting their elongation and resulting in male sterility. Specifically restricting AtHKT1;1 expression to the phloem leads to a 1.5-fold increase in the seed yield upon sodium ion stress. Expanding phloem expression of AtHKT1;1 throughout the entire plant is a promising strategy for increasing plant productivity under salinity stress.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Simportadores , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Simportadores/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Sodio/metabolismo , Regulación de la Expresión Génica de las Plantas
9.
Plant Physiol ; 155(3): 1226-36, 2011 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-21228101

RESUMEN

Jasmonates are ubiquitously occurring plant growth regulators with high structural diversity that mediate numerous developmental processes and stress responses. We have recently identified 12-O-ß-D-glucopyranosyljasmonic acid as the bioactive metabolite, leaf-closing factor (LCF), which induced nyctinastic leaf closure of Samanea saman. We demonstrate that leaf closure of isolated Samanea pinnae is induced upon stereospecific recognition of (-)-LCF, but not by its enantiomer, (+)-ent-LCF, and that the nonglucosylated derivative, (-)-12-hydroxyjasmonic acid also displays weak activity. Similarly, rapid and cell type-specific shrinkage of extensor motor cell protoplasts was selectively initiated upon treatment with (-)-LCF, whereas flexor motor cell protoplasts did not respond. In these bioassays related to leaf movement, all other jasmonates tested were inactive, including jasmonic acid (JA) and the potent derivates JA-isoleucine and coronatine. By contrast, (-)-LCF and (-)-12-hydroxyjasmonic acid were completely inactive with respect to activation of typical JA responses, such as induction of JA-responsive genes LOX2 and OPCL1 in Arabidopsis (Arabidopsis thaliana) or accumulation of plant volatile organic compounds in S. saman and lima bean (Phaseolus lunatus), generally considered to be mediated by JA-isoleucine in a COI1-dependent fashion. Furthermore, application of selective inhibitors indicated that leaf movement in S. saman is mediated by rapid potassium fluxes initiated by opening of potassium-permeable channels. Collectively, our data point to the existence of at least two separate JA signaling pathways in S. saman and that 12-O-ß-D-glucopyranosyljasmonic acid exerts its leaf-closing activity through a mechanism independent of the COI1-JAZ module.


Asunto(s)
Ciclopentanos/farmacología , Fabaceae/efectos de los fármacos , Fabaceae/fisiología , Glucósidos/farmacología , Oxilipinas/farmacología , Hojas de la Planta/efectos de los fármacos , Hojas de la Planta/fisiología , Proteínas de Plantas/metabolismo , Ciclopentanos/química , Fabaceae/citología , Fabaceae/genética , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Genes de Plantas/genética , Glucósidos/química , Moduladores del Transporte de Membrana/farmacología , Movimiento/efectos de los fármacos , Oxilipinas/química , Hojas de la Planta/citología , Proteínas de Plantas/genética , Regiones Promotoras Genéticas/genética , Protoplastos/citología , Protoplastos/efectos de los fármacos , Protoplastos/metabolismo , Compuestos Orgánicos Volátiles/análisis
10.
Nat Commun ; 13(1): 2505, 2022 05 06.
Artículo en Inglés | MEDLINE | ID: mdl-35523970

RESUMEN

In the light reaction of plant photosynthesis, modulation of electron transport chain reactions is important to maintain the efficiency of photosynthesis under a broad range of light intensities. VCCN1 was recently identified as a voltage-gated chloride channel residing in the thylakoid membrane, where it plays a key role in photoreaction tuning to avoid the generation of reactive oxygen species (ROS). Here, we present the cryo-EM structures of Malus domestica VCCN1 (MdVCCN1) in nanodiscs and detergent at 2.7 Å and 3.0 Å resolutions, respectively, and the structure-based electrophysiological analyses. VCCN1 structurally resembles its animal homolog, bestrophin, a Ca2+-gated anion channel. However, unlike bestrophin channels, VCCN1 lacks the Ca2+-binding motif but instead contains an N-terminal charged helix that is anchored to the lipid membrane through an additional amphipathic helix. Electrophysiological experiments demonstrate that these structural elements are essential for the channel activity, thus revealing the distinct activation mechanism of VCCN1.


Asunto(s)
Canales de Cloruro , Tilacoides , Animales , Bestrofinas/metabolismo , Canales de Cloruro/metabolismo , Microscopía por Crioelectrón , Fotosíntesis/fisiología , Tilacoides/metabolismo
11.
Adv Sci (Weinh) ; 9(21): e2201403, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35524639

RESUMEN

Stomatal movement is indispensable for plant growth and survival in response to environmental stimuli. Cytosolic Ca2+ elevation plays a crucial role in ABA-induced stomatal closure during drought stress; however, to what extent the Ca2+ movement across the plasma membrane from the apoplast to the cytosol contributes to this process still needs clarification. Here the authors identify (-)-catechin gallate (CG) and (-)-gallocatechin gallate (GCG), components of green tea, as inhibitors of voltage-dependent K+ channels which regulate K+ fluxes in Arabidopsis thaliana guard cells. In Arabidopsis guard cells CG/GCG prevent ABA-induced: i) membrane depolarization; ii) activation of Ca2+ permeable cation (ICa ) channels; and iii) cytosolic Ca2+ transients. In whole Arabidopsis plants co-treatment with CG/GCG and ABA suppressed ABA-induced stomatal closure and surface temperature increase. Similar to ABA, CG/GCG inhibited stomatal closure is elicited by the elicitor peptide, flg22 but has no impact on dark-induced stomatal closure or light- and fusicoccin-induced stomatal opening, suggesting that the inhibitory effect of CG/GCG is associated with Ca2+ -related signaling pathways. This study further supports the crucial role of ICa channels of the plasma membrane in ABA-induced stomatal closure. Moreover, CG and GCG represent a new tool for the study of abiotic or biotic stress-induced signal transduction pathways.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Catequina , Ácido Abscísico/metabolismo , Ácido Abscísico/farmacología , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/farmacología , Catequina/análogos & derivados , Catequina/metabolismo , Catequina/farmacología , Estomas de Plantas/metabolismo , Té/metabolismo
12.
Cells ; 11(6)2022 03 08.
Artículo en Inglés | MEDLINE | ID: mdl-35326372

RESUMEN

A distinct set of channels and transporters regulates the ion fluxes across the lysosomal membrane. Malfunctioning of these transport proteins and the resulting ionic imbalance is involved in various human diseases, such as lysosomal storage disorders, cancer, as well as metabolic and neurodegenerative diseases. As a consequence, these proteins have stimulated strong interest for their suitability as possible drug targets. A detailed functional characterization of many lysosomal channels and transporters is lacking, mainly due to technical difficulties in applying the standard patch-clamp technique to these small intracellular compartments. In this review, we focus on current methods used to unravel the functional properties of lysosomal ion channels and transporters, stressing their advantages and disadvantages and evaluating their fields of applicability.


Asunto(s)
Canales Iónicos , Enfermedades por Almacenamiento Lisosomal , Humanos , Membranas Intracelulares/metabolismo , Canales Iónicos/metabolismo , Iones/metabolismo , Enfermedades por Almacenamiento Lisosomal/metabolismo , Lisosomas/metabolismo , Técnicas de Placa-Clamp
13.
Sci Rep ; 9(1): 10040, 2019 07 11.
Artículo en Inglés | MEDLINE | ID: mdl-31296940

RESUMEN

Arabidopsis thaliana contains the putative K+ efflux transporters KEA1-KEA6, similar to KefB and KefC of Escherichia coli. KEA1-KEA3 are involved in the regulation of photosynthetic electron transport and chloroplast development. KEA4-KEA6 mediate pH regulation of the endomembrane network during salinity stress. However, the ion transport activities of KEA1-KEA6 have not been directly characterized. In this study, we used an E. coli expression system to examine KEA activity. KEA1-KEA3 and KEA5 showed bi-directional K+ transport activity, whereas KEA4 and KEA6 functioned as a K+ uptake system. The thylakoid membrane-localized Na+/H+ antiporter NhaS3 from the model cyanobacterium Synechocystis is the closest homolog of KEA3. Changing the putative Na+/H+ selective site of KEA3 (Gln-Asp) to that of NhaS3 (Asp-Asp) did not alter the ion selectivity without loss of K+ transport activity. The first residue in the conserved motif was not a determinant for K+ or Na+ selectivity. Deletion of the possible nucleotide-binding KTN domain from KEA3 lowered K+ transport activity, indicating that the KTN domain was important for this function. The KEA3-G422R mutation discovered in the Arabidopsis dpgr mutant increased K+ transport activity, consistent with the mutant phenotype. These results indicate that Arabidopsis KEA1-KEA6 act as K+ transport systems, and support the interpretation that KEA3 promotes dissipation of ΔpH in the thylakoid membrane.


Asunto(s)
Arabidopsis/metabolismo , Antiportadores de Potasio-Hidrógeno/metabolismo , Potasio/metabolismo , Antiportadores/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Transporte Iónico/fisiología , Antiportadores de Potasio-Hidrógeno/genética , Isoformas de Proteínas/metabolismo
14.
Biosci Biotechnol Biochem ; 72(10): 2785-7, 2008 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-18838784

RESUMEN

The patch clamp technique using enlarged yeast tonoplasts is an effective approach to characterizing the Nicotiana tabacum plant tonoplast K+ channel, NtTPK1. We report here that the NtTPK1-mediated currents comprise two phase components, both which were found to be highly selective for K+ over Na+ and Cl-.


Asunto(s)
Expresión Génica , Membranas Intracelulares/metabolismo , Nicotiana/metabolismo , Canales de Potasio/metabolismo , Saccharomyces cerevisiae/metabolismo , Electrofisiología , Técnicas de Placa-Clamp , Canales de Potasio/genética , Saccharomyces cerevisiae/genética , Nicotiana/genética
15.
FEBS J ; 285(6): 1146-1161, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29405580

RESUMEN

Saccharomyces cerevisiae possesses a transient receptor potential (TRP) channel homolog TRPY1 in its vacuolar membrane, considered to be an ancestral TRP channel. So far, studies have focused on the channel properties of TRPY1, but its regulation and physiologic role remained to be elucidated. Here, we investigated TRPY1 channel function in vitro and in vivo. Patch-clamp recording of TRPY1 in yeast vacuolar membranes showed that Ca2+ on the lumen side inhibited TRPY1-mediated channel activity, whereas luminal Zn2+ increased the currents. TRPY1 was activated in the presence of a reducing agent, 2-mercaptoethanol. The cysteine at position 624 was identified as the target for this activating action. This activation was independent of the presence of cytosolic Ca2+ . The amplitude of TRPY1-mediated current was reduced by addition of phosphatidylinositol 3-phosphate on the cytosolic side but not by phosphatidylinositol (PI) or phosphatidylinositol 3,5-phosphate. Measurement of the transient Ca2+ increase in response to hyper-osmotic shock in several yeast mutants defective in different steps of the PI phosphate biogenesis pathway supported this interpretation. Addition of a microtubule inhibitor strongly decreased the transient cytosolic Ca2+ increase upon hyper-osmotic shock. Taken together, the data indicate that the vacuolar TRPY1 Ca2+ channel mediates the perception of cytosolic signals that were induced by external changes in osmolarity, and participates in the modulation of cytosolic calcium signaling through Ca2+ release from the vacuole to maintain intracellular Ca2+ homeostasis in yeast.


Asunto(s)
Calcio/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Canales Catiónicos TRPC/metabolismo , Vacuolas/metabolismo , Zinc/metabolismo , Calcio/farmacología , Cisteína/metabolismo , Homeostasis , Activación del Canal Iónico/efectos de los fármacos , Mercaptoetanol/farmacología , Presión Osmótica , Técnicas de Placa-Clamp , Fosfatos de Fosfatidilinositol/farmacología , Zinc/farmacología
16.
Curr Biol ; 28(14): 2230-2238.e7, 2018 07 23.
Artículo en Inglés | MEDLINE | ID: mdl-29983317

RESUMEN

The circadian leaf opening and closing (nyctinasty) of Fabaceae has attracted scientists' attention since the era of Charles Darwin. Nyctinastic movement is triggered by the alternate swelling and shrinking of motor cells at the base of the leaf. This, in turn, is facilitated by changing osmotic pressures brought about by ion flow through anion and potassium ion channels. However, key regulatory ion channels and molecular mechanisms remain largely unknown. Here, we identify three key ion channels in mimosoid tree Samanea saman: the slow-type anion channels, SsSLAH1 and SsSLAH3, and the Shaker-type potassium channel, SPORK2. We show that cell-specific circadian expression of SsSLAH1 plays a key role in nyctinastic leaf opening. In addition, SsSLAH1 co-expressed with SsSLAH3 in flexor (abaxial) motor cells promoted leaf opening. We confirm the importance of SLAH1 in leaf movement using SLAH1-impaired Glycine max. Identification of this "master player" advances our molecular understanding of nyctinasty.


Asunto(s)
Ritmo Circadiano/genética , Fabaceae/fisiología , Hojas de la Planta/fisiología , Proteínas de Plantas/genética , Canales de Potasio/genética , Canales Aniónicos Dependientes del Voltaje/genética , Fabaceae/genética , Regulación de la Expresión Génica de las Plantas , Presión Osmótica , Proteínas de Plantas/metabolismo , Canales de Potasio/metabolismo , Canales Aniónicos Dependientes del Voltaje/metabolismo
17.
Sci Rep ; 7(1): 2122, 2017 05 18.
Artículo en Inglés | MEDLINE | ID: mdl-28522840

RESUMEN

The physiological effects of caesium (Cs) on living cells are poorly understood. Here, we examined the physiological role of Cs+ on the activity of the potassium transporters in E. coli. In the absence of potassium (K+), Kup-mediated Cs+ uptake partially supported cell growth, however, at a much lower rate than with sufficient K+. In K+-limited medium (0.1 mM), the presence of Cs+ (up to 25 mM) in the medium enhanced growth as much as control medium containing 1 mM K+. This effect depended on the maintenance of basal levels of intracellular K+ by other K+ uptake transporters. Higher amounts of K+ (1 mM) in the medium eliminated the positive effect of Cs+ on growth, and revealed the inhibitory effect of high Cs+ on the growth of wild-type E. coli. Cells lacking Kdp, TrkG and TrkH but expressing Kup grew less well when Cs+ was increased in the medium. A kdp mutant contained an increased ratio of Cs+/K+ in the presence of high Cs+ in the medium and consequently was strongly inhibited in growth. Taken together, under excess Cs+ conditions Kup-mediated Cs+ influx sustains cell growth, which is supported by intracellular K+ supplied by Kdp.


Asunto(s)
Adenosina Trifosfatasas/metabolismo , Proteínas de Transporte de Catión/metabolismo , Cesio/metabolismo , Proteínas de Escherichia coli/metabolismo , Potasio/metabolismo , Transportadoras de Casetes de Unión a ATP/metabolismo , Proliferación Celular , Escherichia coli/metabolismo , Transporte Iónico , Proteínas de la Membrana/metabolismo , Canales de Potasio/metabolismo
18.
Plant Signal Behav ; 12(6): e1334749, 2017 06 03.
Artículo en Inglés | MEDLINE | ID: mdl-28594299

RESUMEN

Members of the nitrate transporter 1/peptide transporter family (NPF) are multifunctional transporters of various compounds including plant hormones and play important roles in plant growth and responses to environmental stress. Recently, we found that Arabidopsis GTR1 (also known as NPF2.10) takes up gibberellic acid and jasmonoyl-L-isoleucine in addition to glucosinolates. For normal plant growth, GTR1 is regulated at the gene expression level; however, it is unclear whether post-translational regulation also occurs. Here, we found that dimerization of GTR1, possibly induced by dephosphorylation of the Thr residue located between the possible transmembrane regions, regulates its plasma membrane localization, leading to transport of glucosinolates and gibberellic acid in Xenopus oocytes. These findings suggest that dimerization of multifunctional transporters contributes to their activities at the plasma membrane.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Membrana Celular/metabolismo , Proteínas de Transporte de Monosacáridos/metabolismo , Multimerización de Proteína , Animales , Membrana Celular/efectos de los fármacos , Giberelinas/metabolismo , Glucosinolatos/farmacología , Proteínas Mutantes/metabolismo , Oocitos/metabolismo , Transporte de Proteínas/efectos de los fármacos , Xenopus
19.
Curr Opin Biotechnol ; 32: 113-120, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25528276

RESUMEN

Plant cells are sensitive to salinity stress and do not require sodium as an essential element for their growth and development. Saline soils reduce crop yields and limit available land. Research shows that HKT transporters provide a potent mechanism for mediating salt tolerance in plants. Knowledge of the molecular ion transport and regulation mechanisms and the control of HKT gene expression are crucial for understanding the mechanisms by which HKT transporters enhance crop performance under salinity stress. This review focuses on HKT transporters in monocot plants and in Arabidopsis as a dicot plant, as a guide to efforts toward improving salt tolerance of plants for increasing the production of crops and bioenergy feedstocks.


Asunto(s)
Proteínas de Transporte de Catión/metabolismo , Proteínas de Plantas/metabolismo , Plantas/metabolismo , Cloruro de Sodio/farmacología , Simportadores/metabolismo , Proteínas de Transporte de Catión/genética , Proteínas de Plantas/genética , Plantas/efectos de los fármacos , Plantas/genética , Salinidad , Estrés Fisiológico , Simportadores/genética
20.
Nat Commun ; 6: 6095, 2015 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-25648767

RESUMEN

Plant hormones are transported across cell membranes during various physiological events. Recent identification of abscisic acid and strigolactone transporters suggests that transport of various plant hormones across membranes does not occur by simple diffusion but requires transporter proteins that are strictly regulated during development. Here, we report that a major glucosinolate transporter, GTR1/NPF2.10, is multifunctional and may be involved in hormone transport in Arabidopsis thaliana. When heterologously expressed in oocytes, GTR1 transports jasmonoyl-isoleucine and gibberellin in addition to glucosinolates. gtr1 mutants are severely impaired in filament elongation and anther dehiscence resulting in reduced fertility, but these phenotypes can be rescued by gibberellin treatment. These results suggest that GTR1 may be a multifunctional transporter for the structurally distinct compounds glucosinolates, jasmonoyl-isoleucine and gibberellin, and may positively regulate stamen development by mediating gibberellin supply.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/crecimiento & desarrollo , Arabidopsis/metabolismo , Ciclopentanos/metabolismo , Flores/metabolismo , Giberelinas/metabolismo , Proteínas de Transporte de Monosacáridos/metabolismo , Oxilipinas/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Flores/crecimiento & desarrollo , Regulación de la Expresión Génica de las Plantas/genética , Regulación de la Expresión Génica de las Plantas/fisiología , Proteínas de Transporte de Monosacáridos/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA