Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Hepatology ; 59(1): 296-306, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23813495

RESUMEN

UNLABELLED: Interleukin (IL)-17 is a proinflammatory and fibrogenic cytokine mainly produced by T-helper (Th)17 lymphocytes, together with the hepatoprotective and antifibrogenic cytokine, IL-22. Cannabinoid receptor 2 (CB2) is predominantly expressed in immune cells and displays anti-inflammatory and antifibrogenic effects. In the present study, we further investigated the mechanism underlying antifibrogenic properties of CB2 receptor and explored its effect on the profibrogenic properties of IL-17. After bile duct ligation (BDL), the hepatic expression of Th17 markers and IL-17 production were enhanced in CB2(-/-) mice, as compared to wild-type (WT) counterparts, and correlated with increased fibrosis in these animals. In contrast, IL-22-induced expression was similar in both animal groups. Inhibition of Th17 differentiation by digoxin lowered Th17 marker gene expression and IL-17 production and strongly reduced liver fibrosis in CB2(-/-) BDL mice. In vitro, differentiation of CD4(+) naïve T cells into Th17 lymphocytes was decreased by the CB2 agonist, JWH-133, and was associated with reduced Th17 marker messenger RNA expression and IL-17 production, without modification of IL-22 release. The inhibitory effect of JWH-133 on IL-17 production relied on signal transducer and activator of transcription (STAT)5 phosphorylation. Indeed, STAT5 phosphorylation and translocation into the nucleus was enhanced in JWH133-treated Th17 lymphocytes, and the addition of a STAT5 inhibitor reversed the inhibitory effect of the CB2 agonist on IL-17 production, without affecting IL-22 levels. Finally, in vitro studies also demonstrated that CB2 receptor activation in macrophages and hepatic myofibroblasts blunts IL-17-induced proinflammatory gene expression. CONCLUSION: These data demonstrate that CB2 receptor activation decreases liver fibrosis by selectively reducing IL-17 production by Th17 lymphocytes via a STAT5-dependent pathway, and by blunting the proinflammatory effects of IL-17 on its target cells, while preserving IL-22 production.


Asunto(s)
Interleucina-17/metabolismo , Cirrosis Hepática/inmunología , Cirrosis Hepática/metabolismo , Receptor Cannabinoide CB2/metabolismo , Células Th17/metabolismo , Animales , Conductos Biliares , Interleucinas/metabolismo , Ligadura , Macrófagos/fisiología , Masculino , Ratones , Ratones Endogámicos C57BL , Miofibroblastos/fisiología , Factor de Transcripción STAT5/metabolismo , Interleucina-22
2.
Hepatology ; 59(5): 1998-2009, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24089324

RESUMEN

UNLABELLED: Poly (ADP-ribose) polymerase 1 (PARP-1) is a constitutive enzyme, the major isoform of the PARP family, which is involved in the regulation of DNA repair, cell death, metabolism, and inflammatory responses. Pharmacological inhibitors of PARP provide significant therapeutic benefits in various preclinical disease models associated with tissue injury and inflammation. However, our understanding the role of PARP activation in the pathophysiology of liver inflammation and fibrosis is limited. In this study we investigated the role of PARP-1 in liver inflammation and fibrosis using acute and chronic models of carbon tetrachloride (CCl4 )-induced liver injury and fibrosis, a model of bile duct ligation (BDL)-induced hepatic fibrosis in vivo, and isolated liver-derived cells ex vivo. Pharmacological inhibition of PARP with structurally distinct inhibitors or genetic deletion of PARP-1 markedly attenuated CCl4 -induced hepatocyte death, inflammation, and fibrosis. Interestingly, the chronic CCl4 -induced liver injury was also characterized by mitochondrial dysfunction and dysregulation of numerous genes involved in metabolism. Most of these pathological changes were attenuated by PARP inhibitors. PARP inhibition not only prevented CCl4 -induced chronic liver inflammation and fibrosis, but was also able to reverse these pathological processes. PARP inhibitors also attenuated the development of BDL-induced hepatic fibrosis in mice. In liver biopsies of subjects with alcoholic or hepatitis B-induced cirrhosis, increased nitrative stress and PARP activation was noted. CONCLUSION: The reactive oxygen/nitrogen species-PARP pathway plays a pathogenetic role in the development of liver inflammation, metabolism, and fibrosis. PARP inhibitors are currently in clinical trials for oncological indications, and the current results indicate that liver inflammation and liver fibrosis may be additional clinical indications where PARP inhibition may be of translational potential.


Asunto(s)
Hepatitis/etiología , Cirrosis Hepática Experimental/etiología , Poli(ADP-Ribosa) Polimerasas/fisiología , Animales , Tetracloruro de Carbono/toxicidad , Células Estrelladas Hepáticas/fisiología , Hepatitis/tratamiento farmacológico , Humanos , Cirrosis Hepática Experimental/tratamiento farmacológico , Masculino , Ratones , Ratones Endogámicos C57BL , Poli(ADP-Ribosa) Polimerasa-1 , Inhibidores de Poli(ADP-Ribosa) Polimerasas
3.
Am J Pathol ; 180(6): 2284-92, 2012 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-22507836

RESUMEN

The mechanisms of podocyte disorders in cases of idiopathic nephrotic syndrome (INS) are complex and remain incompletely elucidated. The abnormal regulation of NF-κB may play a key role in the pathophysiology of these podocyte diseases, but at present, NF-κB has not been thoroughly investigated. In this study, we report that induction of c-mip in podocytes of patients with INS is associated with a down-regulation of RelA, a potent antiapoptotic factor that belongs to the NF-κB family. Overexpression of c-mip in differentiated podocytes promotes apoptosis by inducing caspase-3 activity and up-regulating the proapoptotic protein Bax, whereas the overall levels of the antiapoptotic protein Bcl-2 was concomitantly decreased. The associated overexpression of RelA prevented the proapoptotic effects of c-mip. In addition, the targeted induction of c-mip in podocytes in vivo inhibited the expression of the RelA protein and increased the Bax/Bcl-2 ratio. The expression of both c-mip and active caspase-3 increased in focal and segmental glomerulosclerosis biopsies, and both proteins displayed a close spatial relationship. These results suggest that alterations in NF-κB activity might result from the up-regulation of c-mip and are likely to contribute to podocyte disorders in cases of INS.


Asunto(s)
Apoptosis/fisiología , Proteínas Portadoras/fisiología , FN-kappa B/metabolismo , Síndrome Nefrótico/metabolismo , Podocitos/metabolismo , Proteínas Adaptadoras Transductoras de Señales , Adulto , Animales , Proteínas Portadoras/biosíntesis , Caspasa 3/metabolismo , Línea Celular , Regulación hacia Abajo/fisiología , Humanos , Etiquetado Corte-Fin in Situ , Masculino , Ratones , Ratones Transgénicos , Microscopía Confocal , Síndrome Nefrótico/patología , Podocitos/patología , Factor de Transcripción ReIA/biosíntesis , Factor de Transcripción ReIA/genética , Regulación hacia Arriba/fisiología
4.
J Bacteriol ; 189(24): 9090-100, 2007 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-17921289

RESUMEN

The family of ammonia and ammonium channel proteins comprises the Amt proteins, which are present in all three domains of life with the notable exception of vertebrates, and the homologous Rh proteins (Rh50 and Rh30) that have been described thus far only in eukaryotes. The existence of an RH50 gene in bacteria was first revealed by the genome sequencing of the ammonia-oxidizing bacterium Nitrosomonas europaea. Here we have used a phylogenetic approach to study the evolution of the N. europaea RH50 gene, and we show that this gene, probably as a component of an integron cassette, has been transferred to the N. europaea genome by horizontal gene transfer. In addition, by functionally characterizing the Rh50(Ne) protein and the corresponding knockout mutant, we determined that NeRh50 can mediate ammonium uptake. The RH50(Ne) gene may thus have replaced functionally the AMT gene, which is missing in the genome of N. europaea and may be regarded as a case of nonorthologous gene displacement.


Asunto(s)
Amoníaco/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Nitrosomonas europaea/genética , Nitrosomonas europaea/fisiología , Evolución Molecular , Eliminación de Gen , Filogenia , Homología de Secuencia de Aminoácido
5.
Br J Pharmacol ; 163(4): 876-86, 2011 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-21366549

RESUMEN

BACKGROUND AND PURPOSE: The cystic fibrosis transmembrane conductance regulator (CFTR) is a cAMP-dependent chloride channel in the plasma membrane of epithelia whose mutation is the cause of the genetic disease cystic fibrosis (CF). The most frequent CFTR mutation is deletion of Phe(508) and this mutant protein (delF508CFTR) does not readily translocate to the plasma membrane and is rapidly degraded within the cell. We hypothesized that treating epithelial cells with resveratrol, a natural polyphenolic, phyto-ooestrogenic compound from grapes, could modulate both the expression and localization of CFTR. EXPERIMENTAL APPROACH: Cells endogenously expressing CFTR (MDCK1 and CAPAN1 cells) or delF508CFTR (CFPAC1 and airway epithelial cells, deriving from human bronchial biopsies) were treated with resveratrol for 2 or 18 h. The effect of this treatment on CFTR and delF508CFTR expression and localization was evaluated using RT-PCR, Western blot and immunocytochemistry. Halide efflux was measured with a fluorescent dye and with halide-sensitive electrodes. Production of interleukin-8 by these cells was assayed by ELISA. KEY RESULTS: Resveratrol treatment increased CFTR expression or maturation in immunoblotting experiments in MDCK1 cells or in CFPAC1 cells. Indirect immunofluorescence experiments showed a shift of delF508CFTR localization towards the (peri)-membrane area in CFPAC1 cells and in human airway epithelial cells. A cAMP-dependent increase in membrane permeability to halide was detected in resveratrol-treated CFPAC1 cells, and was inhibited by a selective inhibitor of CFTR. CONCLUSION AND IMPLICATIONS: These results show that resveratrol modulated CFTR expression and localization and could rescue cAMP-dependent chloride transport in delF508CFTR cells.


Asunto(s)
Proteínas de Transporte de Anión/metabolismo , AMP Cíclico/metabolismo , Regulador de Conductancia de Transmembrana de Fibrosis Quística/metabolismo , Fibrosis Quística/tratamiento farmacológico , Fibrosis Quística/metabolismo , Estilbenos/farmacología , Animales , Transporte Biológico , Línea Celular , Línea Celular Tumoral , Membrana Celular/genética , Membrana Celular/metabolismo , Canales de Cloruro/metabolismo , Fibrosis Quística/genética , Regulador de Conductancia de Transmembrana de Fibrosis Quística/biosíntesis , Regulador de Conductancia de Transmembrana de Fibrosis Quística/genética , Perros , Células Epiteliales/metabolismo , Humanos , Interleucina-8/biosíntesis , Interleucina-8/genética , Interleucina-8/metabolismo , Mutación , Resveratrol
6.
Cell Physiol Biochem ; 21(1-3): 75-86, 2008.
Artículo en Inglés | MEDLINE | ID: mdl-18209474

RESUMEN

The CFTR protein, encoded by the gene whose mutations induce Cystic Fibrosis, is an anion channel devoted mainly to chloride and bicarbonate transmembrane transport, but which also regulates transport of several other ions. Moreover, it is implicated in the cell response to inflammation, and, reciprocally, cftr gene expression is modulated by inflammatory stimuli and transduction pathways. Looking for a control of CFTR expression by ionic conditions, we investigated the effect of altered extracellular bicarbonate ion concentration on CFTR expression in human pulmonary Calu-3 cells. We found that basal cftr gene transcription is enhanced when extracellular HCO(3)(-) concentration increases from 0 to 25 mmol/l. The transduction pathway controlled by these extracellular [HCO(3)(-)] variations includes cAMP production linked to the stimulation of soluble adenylyl cyclase (sAC), and nuclear accumulation of the transcription factor, CREB. Basal membrane content in CFTR protein exhibits the same variations as cftr mRNA in cells incubated in the presence of extracellular [HCO(3)(-)] between 0 and 25 mmol/l, and is also decreased by inhibiting sAC in the presence of HCO(3)(-). These results show that bicarbonate-controlled sAC stimulation must be taken into account in cell physiology and that basal CFTR expression depends on an ionic parameter.


Asunto(s)
Adenilil Ciclasas/metabolismo , Bicarbonatos/farmacología , Regulador de Conductancia de Transmembrana de Fibrosis Quística/genética , Regulación de la Expresión Génica/efectos de los fármacos , Pulmón/citología , Pulmón/enzimología , Línea Celular , Núcleo Celular/efectos de los fármacos , Núcleo Celular/metabolismo , AMP Cíclico/biosíntesis , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo , Regulador de Conductancia de Transmembrana de Fibrosis Quística/metabolismo , Activación Enzimática/efectos de los fármacos , Humanos , Pulmón/efectos de los fármacos , Pulmón/metabolismo , Fosfoproteínas/metabolismo , Fosforilación/efectos de los fármacos , Biosíntesis de Proteínas/efectos de los fármacos , ARN Mensajero/genética , ARN Mensajero/metabolismo , Solubilidad/efectos de los fármacos , Transcripción Genética/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA