Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Opt Express ; 22(9): 10975-86, 2014 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-24921795

RESUMEN

A number of critical issues for dual-polarization single- and multi-band optical orthogonal-frequency division multiplexing (DP-SB/MB-OFDM) signals are analyzed in dispersion compensation fiber (DCF)-free long-haul links. For the first time, different DP crosstalk removal techniques are compared, the maximum transmission-reach is investigated, and the impact of subcarrier number and high-level modulation formats are explored thoroughly. It is shown, for a bit-error-rate (BER) of 10(-3), 2000 km of quaternary phase-shift keying (QPSK) DP-MB-OFDM transmission is feasible. At high launched optical powers (LOP), maximum-likelihood decoding can extend the LOP of 40 Gb/s QPSK DP-SB-OFDM at 2000 km by 1.5 dB compared to zero-forcing. For a 100 Gb/s DP-MB-OFDM system, a high number of subcarriers contribute to improved BER but at the cost of digital signal processing computational complexity, whilst by adapting the cyclic prefix length the BER can be improved for a low number of subcarriers. In addition, when 16-quadrature amplitude modulation (16QAM) is employed the digital-to-analogue/analogue-to-digital converter (DAC/ADC) bandwidth is relaxed with a degraded BER; while the 'circular' 8QAM is slightly superior to its 'rectangular' form. Finally, the transmission of wavelength-division multiplexing DP-MB-OFDM and single-carrier DP-QPSK is experimentally compared for up to 500 Gb/s showing great potential and similar performance at 1000 km DCF-free G.652 line.

2.
Opt Express ; 19(25): 25696-711, 2011 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-22273962

RESUMEN

Extensive explorations are undertaken, for the first time, of the feasibility of utilizing quantum-dot semiconductor optical amplifier intensity modulators (QD-SOA-IMs) in cost-sensitive intensity-modulation and direct-detection (IMDD) passive optical network (PON) systems based on adaptively modulated optical orthogonal frequency division multiplexing (AMOOFDM). A theoretical QD-SOA-IM model is developed, based on which optimum QD-SOA-IM operating conditions are identified together with major physical mechanism considerably affecting the system performance. It is shown that, in comparison with previously reported SOA-IMs in similar transmission systems, QD-SOA-IMs cannot only considerably improve the AMOOFDM transmission performance but also broaden the dynamic range of optimum operating conditions. In particular, for achieving signal bit rates of >30Gb/s over >60km single mode fiber (SMF), QD-SOA-IMs offer a 10dB reduction in CW optical input powers injected into the modulators. In addition, QD-SOA-IMs can also be employed to compensate the chromatic dispersion effect.


Asunto(s)
Amplificadores Electrónicos , Diseño Asistido por Computadora , Modelos Teóricos , Dispositivos Ópticos , Puntos Cuánticos , Semiconductores , Procesamiento de Señales Asistido por Computador/instrumentación , Telecomunicaciones/instrumentación , Simulación por Computador , Diseño de Equipo , Análisis de Falla de Equipo , Luz , Dispersión de Radiación
3.
Opt Express ; 18(8): 8556-73, 2010 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-20588701

RESUMEN

Detailed investigations of the transmission performance of adaptively modulated optical orthogonal frequency division multiplexed (AMOOFDM) signals converted using reflective semiconductor optical amplifiers (RSOAs) are undertaken over intensity-modulation and direct-detection (IMDD) single-mode fiber (SMF) transmission systems for WDM-PONs. The theoretical RSOA model adopted for modulating the AMOOFDM signals is experimentally verified rigorously in the aforementioned transmission systems incorporating recently developed real-time end-to-end OOFDM transceivers. Extensive performance comparisons are also made between RSOA and SOA intensity modulators. Optimum RSOA operating conditions are identified, which are independent of RSOA rear-facet reflectivity and very similar to those corresponding to SOAs. Under the identified optimum operating conditions, the RSOA and SOA intensity modulators support the identical AMOOFDM transmission performance of 30Gb/s over 60km SMFs. Under low-cost optical component-enabled practical operating conditions, RSOA intensity modulators with rear-facet reflectivity values of >0.3 outperform considerably SOA intensity modulators in transmission performance, which decreases significantly with reducing RSOA rear-facet reflectivity and optical input power. In addition, results also show that use can be made of the RSOA/SOA intensity modulation-induced negative frequency chirp to improve the AMOOFDM transmission performance in IMDD SMF systems.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA