Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Glia ; 63(3): 383-99, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25327839

RESUMEN

In the central nervous system, nitric oxide (NO) transmits signals from one neurone to another, or from neurones to astrocytes or blood vessels, but the possibility of oligodendrocytes being physiological NO targets has been largely ignored. By exploiting immunocytochemistry for cGMP, the second messenger generated on activation of NO receptors, oligodendrocytes were found to respond to both exogenous and endogenous NO in cerebellar slices from rats aged 8 days to adulthood. Atrial natriuretic peptide, which acts on membrane-associated guanylyl cyclase-coupled receptors, also raised oligodendrocyte cGMP in cerebellar slices. The main endogenous source of NO accessing oligodendrocytes appeared to be the neuronal NO synthase isoform, which was active even under basal conditions and in a manner that was independent of glutamate receptors. Oligodendrocytes in brainstem slices were also shown to be potential NO targets. In contrast, in the optic nerve, oligodendrocyte cGMP was raised by natriuretic peptides but not NO. When cultures of cerebral cortex were continuously exposed to low NO concentrations (estimated as 40-90 pM), oligodendrocytes responded with a striking increase in arborization. This stimulation of oligodendrocyte growth could be replicated by low concentrations of 8-bromo-cGMP (maximum effect at 1 µM). It is concluded that oligodendrocytes are probably widespread targets for physiological NO (or natriuretic peptide) signals, with the resulting rise in cGMP serving to enhance their growth and maturation. NO might help coordinate the myelination of axons to the ongoing level of neuronal activity during development and could potentially contribute to adaptive changes in myelination in the adult.


Asunto(s)
Encéfalo/crecimiento & desarrollo , Encéfalo/fisiología , Diferenciación Celular/fisiología , Óxido Nítrico/metabolismo , Oligodendroglía/fisiología , Animales , Encéfalo/citología , Células Cultivadas , GMP Cíclico/análogos & derivados , GMP Cíclico/metabolismo , GMP Cíclico/farmacología , Masculino , Ratones de la Cepa 129 , Ratones Endogámicos C57BL , Ratones Noqueados , Péptidos Natriuréticos/metabolismo , Óxido Nítrico Sintasa de Tipo I/metabolismo , Óxido Nítrico Sintasa de Tipo III/genética , Óxido Nítrico Sintasa de Tipo III/metabolismo , Oligodendroglía/citología , Inhibidores de Proteínas Quinasas/farmacología , Ratas Sprague-Dawley , Técnicas de Cultivo de Tejidos
2.
Bioorg Med Chem ; 23(17): 5303-10, 2015 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-26264842

RESUMEN

Soluble guanylate cyclase (sGC) is a haem containing enzyme that regulates cardiovascular homeostasis and multiple mechanisms in the central and peripheral nervous system. Commonly used inhibitors of sGC activity act through oxidation of the haem moiety, however they also bind haemoglobin and this limits their bioavailability for in vivo studies. We have discovered a new class of small molecule inhibitors of sGC and have characterised a compound designated D12 (compound 10) which binds to the catalytic domain of the enzyme with a KD of 11 µM in a SPR assay.


Asunto(s)
Activadores de Enzimas/química , Activadores de Enzimas/farmacología , Guanilato Ciclasa/antagonistas & inhibidores , Quinoxalinas/química , Quinoxalinas/farmacología , Receptores Citoplasmáticos y Nucleares/antagonistas & inhibidores , Bibliotecas de Moléculas Pequeñas/química , Bibliotecas de Moléculas Pequeñas/farmacología , Dominio Catalítico , Guanilato Ciclasa/química , Guanilato Ciclasa/metabolismo , Humanos , Simulación del Acoplamiento Molecular , Óxido Nítrico/metabolismo , Receptores Citoplasmáticos y Nucleares/química , Receptores Citoplasmáticos y Nucleares/metabolismo , Guanilil Ciclasa Soluble
3.
Bioorg Med Chem Lett ; 24(4): 1075-9, 2014 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-24480469

RESUMEN

Soluble Guanylate Cyclase (sGC) is the receptor for the signalling agent nitric oxide (NO) and catalyses the production of the second messenger cyclic guanosine monophosphate (cGMP) from guanosine triphosphate (GTP). The enzyme is an attractive drug target for small molecules that act in the cardiovascular and pulmonary systems, and has also shown to be a potential target in neurological disorders. We have discovered that 5-(indazol-3-yl)-1,2,4-oxadiazoles activate the enzyme in the absence of added NO and shown they bind to the catalytic domain of the enzyme after development of a surface plasmon resonance assay that allows the biophysical detection of intrinsic binding of ligands to the full length sGC and to a construct of the catalytic domain.


Asunto(s)
Guanilato Ciclasa/metabolismo , Oxadiazoles/farmacología , Receptores Citoplasmáticos y Nucleares/metabolismo , Resonancia por Plasmón de Superficie , Biocatálisis , Dominio Catalítico/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Activación Enzimática/efectos de los fármacos , Guanosina Monofosfato/biosíntesis , Guanilato Ciclasa/antagonistas & inhibidores , Estructura Molecular , Oxadiazoles/química , Receptores Citoplasmáticos y Nucleares/antagonistas & inhibidores , Guanilil Ciclasa Soluble , Relación Estructura-Actividad
4.
Front Mol Neurosci ; 6: 26, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24068983

RESUMEN

Genetically-encoded biosensors are powerful tools for understanding cellular signal transduction mechanisms. In aiming to investigate cGMP signaling in neurones using the EGFP-based fluorescent biosensor, FlincG (fluorescent indicator for cGMP), we encountered weak or non-existent fluorescence after attempted transfection with plasmid DNA, even in HEK293T cells. Adenoviral infection of HEK293T cells with FlincG, however, had previously proved successful. Both constructs were found to harbor a mutation in the EGFP domain and had a tail of 17 amino acids at the C-terminus that differed from the published sequence. These discrepancies were systematically examined, together with mutations found beneficial for the related GCaMP family of Ca(2+) biosensors, in a HEK293T cell line stably expressing both nitric oxide (NO)-activated guanylyl cyclase and phosphodiesterase-5. Restoring the mutated amino acid improved basal fluorescence whereas additional restoration of the correct C-terminal tail resulted in poor cGMP sensing as assessed by superfusion of either 8-bromo-cGMP or NO. Ultimately, two improved FlincGs were identified: one (FlincG2) had the divergent tail and gave moderate basal fluorescence and cGMP response amplitude and the other (FlincG3) had the correct tail, a GCaMP-like mutation in the EGFP region and an N-terminal tag, and was superior in both respects. All variants tested were strongly influenced by pH over the physiological range, in common with other EGFP-based biosensors. Purified FlincG3 protein exhibited a lower cGMP affinity (0.89 µM) than reported for the original FlincG (0.17 µM) but retained rapid kinetics and a 230-fold selectivity over cAMP. Successful expression of FlincG2 or FlincG3 in differentiated N1E-115 neuroblastoma cells and in primary cultures of hippocampal and dorsal root ganglion cells commends them for real-time imaging of cGMP dynamics in neural (and other) cells, and in their subcellular specializations.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA