Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 134
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
FASEB J ; 36(3): e22177, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35142393

RESUMEN

Exosomes, key mediators of cell-cell communication, derived from type 2 diabetes mellitus (T2DM) exhibit detrimental effects. Exercise improves endothelial function in part via the secretion of exosomes into circulation. Extracellular superoxide dismutase (SOD3) is a major secretory copper (Cu) antioxidant enzyme that catalyzes the dismutation of O2•- to H2 O2 whose activity requires the Cu transporter ATP7A. However, the role of SOD3 in exercise-induced angiogenic effects of circulating plasma exosomes on endothelial cells (ECs) in T2DM remains unknown. Here, we show that both SOD3 and ATP7A proteins were present in plasma exosomes in mice, which was significantly increased after two weeks of volunteer wheel exercise. A single bout of exercise in humans also showed a significant increase in SOD3 and ATP7A protein expression in plasma exosomes. Plasma exosomes from T2DM mice significantly reduced angiogenic responses in human ECs or mouse skin wound healing models, which was associated with a decrease in ATP7A, but not SOD3 expression in exosomes. Exercise training in T2DM mice restored the angiogenic effects of T2DM exosomes in ECs by increasing ATP7A in exosomes, which was not observed in exercised T2DM/SOD3-/- mice. Furthermore, exosomes overexpressing SOD3 significantly enhanced angiogenesis in ECs by increasing local H2 O2  levels in a heparin-binding domain-dependent manner as well as restored defective wound healing and angiogenesis in T2DM or SOD3-/- mice. In conclusion, exercise improves the angiogenic potential of circulating exosomes in T2DM in a SOD3-dependent manner. Exosomal SOD3 may provide an exercise mimetic therapy that supports neovascularization and wound repair in cardiometabolic disease.


Asunto(s)
Diabetes Mellitus Tipo 2/metabolismo , Exosomas/metabolismo , Neovascularización Fisiológica , Carrera , Superóxido Dismutasa/metabolismo , Animales , Células Cultivadas , ATPasas Transportadoras de Cobre/sangre , ATPasas Transportadoras de Cobre/metabolismo , Diabetes Mellitus Tipo 2/fisiopatología , Endotelio Vascular/metabolismo , Endotelio Vascular/fisiología , Ejercicio Físico , Femenino , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Persona de Mediana Edad , Condicionamiento Físico Animal/métodos , Ratas , Superóxido Dismutasa/sangre
2.
Physiol Genomics ; 54(8): 296-304, 2022 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-35759450

RESUMEN

Fibro-adipogenic progenitor cells (FAPs) are a population of stem cells in skeletal muscle that play multiple roles in muscle repair and regeneration through their complex secretome; however, it is not well understood how the FAP secretome is altered with muscle disuse atrophy. Previous work suggests that the inflammatory cytokine IL-1ß is increased in FAPs with disuse and denervation. Inflammasome activation and IL-1ß secretion are also known to stimulate the release of extracellular vesicles (EVs). Here, we examined the microRNA (miRNA) cargo of FAP-derived, platelet-derived growth factor receptor A (PDGFRα+) EVs from hindlimb muscles of wild-type and IL-1ß KO mice after 14 days of single-hindlimb immobilization. Hindlimb muscles were isolated from mice following the immobilization period, and PDGFRα+ extracellular vesicles were isolated using size-exclusion chromatography and immunoprecipitation. Microarrays were performed to detect changes in miRNAs with unloading and IL-1ß deficiency. Results indicate that the PDGFRα+, FAP-derived EVs show a significant increase in miRNAs, such as miR-let-7c, miR-let-7b, miR-181a, and miR-124. These miRNAs have previously been demonstrated to play important roles in cellular senescence and muscle atrophy. Furthermore, the expression of these same miRNAs was not significantly altered in FAP-derived EVs isolated from the immobilized IL-1ß KO. These data suggest that disuse-related activation of IL-1ß can mediate the miRNA cargo of FAP-derived EVs, contributing directly to the release of senescence- and atrophy-related miRNAs. Therapies targeting FAPs in settings associated with muscle disuse atrophy may therefore have the potential to preserve muscle function and enhance muscle recovery.


Asunto(s)
Vesículas Extracelulares , Interleucina-1beta/metabolismo , MicroARNs , Trastornos Musculares Atróficos , Animales , Vesículas Extracelulares/metabolismo , Ratones , MicroARNs/genética , MicroARNs/metabolismo , Músculo Esquelético/metabolismo , Trastornos Musculares Atróficos/metabolismo , Receptor alfa de Factor de Crecimiento Derivado de Plaquetas/metabolismo , Células Madre/metabolismo
3.
Connect Tissue Res ; 62(1): 99-114, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-32602385

RESUMEN

Traumatic musculoskeletal injuries are common in both the civilian and combat care settings. Significant barriers exist to repairing these injuries including fracture nonunion, muscle fibrosis, re-innervation, and compartment syndrome, as well as infection and inflammation. Recently, extracellular vesicles (EVs), including exosomes and microvesicles, have attracted attention in the field of musculoskeletal regeneration. These vesicles are released by different cell types and play a vital role in cell communication by delivering functional cargoes such as proteins and RNAs. Many of these cargo molecules can be utilized for repair purposes in skeletal disorders such as osteoporosis, osteogenesis imperfecta, sarcopenia, and fracture healing. There are, however, some challenges to overcome in order to advance the successful application of these vesicles in the therapeutic setting. These include large-scale production and isolation of exosomes, long-term storage, in vivo stability, and strategies for tissue-specific targeting and delivery. This paper reviews the general characteristics of exosomes along with their physiological roles and contribution to the pathogenesis of musculoskeletal diseases. We also highlight new findings on the use of synthetic exosomes to overcome the limitations of native exosomes in treating musculoskeletal injuries and disorders.


Asunto(s)
Vesículas Extracelulares , Comunicación Celular , Sistemas de Liberación de Medicamentos , Exosomas , Músculo Esquelético , Regeneración
4.
Mediators Inflamm ; 2021: 2911578, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34621138

RESUMEN

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes coronavirus disease 2019 (COVID-19), affecting multiple organ systems, including the respiratory tract and lungs. Several studies have reported that the tryptophan-kynurenine pathway is altered in COVID-19 patients. The tryptophan-kynurenine pathway plays a vital role in regulating inflammation, metabolism, immune responses, and musculoskeletal system biology. In this minireview, we surmise the effects of the kynurenine pathway in COVID-19 patients and how this pathway might impact muscle and bone biology.


Asunto(s)
Enfermedades Óseas/etiología , COVID-19/complicaciones , Quinurenina/metabolismo , Enfermedades Musculares/etiología , SARS-CoV-2 , Triptófano/metabolismo , Animales , Humanos , Receptores de Hidrocarburo de Aril/fisiología , Transducción de Señal/fisiología
5.
Int J Mol Sci ; 22(9)2021 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-34066870

RESUMEN

The gut microflora is a vital component of the gastrointestinal (GI) system that regulates local and systemic immunity, inflammatory response, the digestive system, and overall health. Older people commonly suffer from inadequate nutrition or poor diets, which could potentially alter the gut microbiota. The essential amino acid (AA) tryptophan (TRP) is a vital diet component that plays a critical role in physiological stress responses, neuropsychiatric health, oxidative systems, inflammatory responses, and GI health. The present study investigates the relationship between varied TRP diets, the gut microbiome, and inflammatory responses in an aged mouse model. We fed aged mice either a TRP-deficient (0.1%), TRP-recommended (0.2%), or high-TRP (1.25%) diet for eight weeks and observed changes in the gut bacterial environment and the inflammatory responses via cytokine analysis (IL-1a, IL-6, IL-17A, and IL-27). The mice on the TRP-deficient diets showed changes in their bacterial abundance of Coriobacteriia class, Acetatifactor genus, Lachnospiraceae family, Enterococcus faecalis species, Clostridium sp genus, and Oscillibacter genus. Further, these mice showed significant increases in IL-6, IL-17A, and IL-1a and decreased IL-27 levels. These data suggest a direct association between dietary TRP content, the gut microbiota microenvironment, and inflammatory responses in aged mice models.


Asunto(s)
Envejecimiento/patología , Dieta , Microbioma Gastrointestinal , Inflamación/patología , Triptófano/deficiencia , Envejecimiento/sangre , Animales , Bacterias/clasificación , Biodiversidad , Citocinas/sangre , Heces/microbiología , Inflamación/sangre , Masculino , Ratones , Ratones Endogámicos C57BL , Filogenia
6.
BMC Geriatr ; 20(1): 420, 2020 10 21.
Artículo en Inglés | MEDLINE | ID: mdl-33087053

RESUMEN

BACKGROUND: Apelin, an active endogenous peptide, has been recently receiving great attention as a promising target for antiaging intervention, primarily based on results from genetically altered mice. To validate previous experimental data and investigate the possible role of apelin in humans, in this study, we examined serum apelin level in relation to frailty and its associated parameters in a cohort of ambulatory, community-dwelling older adults. METHODS: Blood samples were collected from 80 participants who underwent a comprehensive geriatric assessment, and apelin level was measured using an enzyme immunoassay kit. Phenotypic frailty and deficit-accumulation frailty index (FI) were assessed using widely validated approaches, proposed by Fried and Rockwood groups, respectively. RESULTS: After adjustment for sex, age, and body mass index, serum apelin level was found to be not significantly different according to phenotypic frailty status (P = 0.550) and not associated with FI, grip strength, gait speed, time to complete 5 chair stands, and muscle mass (P = 0.433 to 0.982). To determine whether the association between serum apelin level and frailty has a threshold effect, we divided the participants into quartiles according to serum apelin level. However, there were no differences in terms of frailty-related parameters and the risk for frailty among the quartile groups (P = 0.248 to 0.741). CONCLUSIONS: The serum apelin level was not associated with both phenotypic frailty and functional parameters in older adults, despite its beneficial effects against age-related physiologic decline in animal models. Further large-scale longitudinal studies are necessary to understand the definite role of circulating apelin in frailty risk assessment.


Asunto(s)
Fragilidad , Anciano , Animales , Apelina , Estudios Transversales , Anciano Frágil , Fragilidad/diagnóstico , Evaluación Geriátrica , Humanos , Ratones
7.
Int J Mol Sci ; 21(18)2020 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-32933099

RESUMEN

Although aging is considered a normal process, there are cellular and molecular changes that occur with aging that may be detrimental to health. Osteoporosis is one of the most common age-related degenerative diseases, and its progression correlates with aging and decreased capacity for stem cell differentiation and proliferation in both men and women. Tryptophan metabolism through the kynurenine pathway appears to be a key factor in promoting bone-aging phenotypes, promoting bone breakdown and interfering with stem cell function and osteogenesis; however, little data is available on the impact of tryptophan metabolites downstream of kynurenine. Here we review available data on the impact of these tryptophan breakdown products on the body in general and, when available, the existing evidence of their impact on bone. A number of tryptophan metabolites (e.g., 3-hydroxykynurenine (3HKYN), kynurenic acid (KYNA) and anthranilic acid (AA)) have a detrimental effect on bone, decreasing bone mineral density (BMD) and increasing fracture risk. Other metabolites (e.g., 3-hydroxyAA, xanthurenic acid (XA), picolinic acid (PIA), quinolinic acid (QA), and NAD+) promote an increase in bone mineral density and are associated with lower fracture risk. Furthermore, the effects of other tryptophan breakdown products (e.g., serotonin) are complex, with either anabolic or catabolic actions on bone depending on their source. The mechanisms involved in the cellular actions of these tryptophan metabolites on bone are not yet fully known and will require further research as they are potential therapeutic targets. The current review is meant as a brief overview of existing English language literature on tryptophan and its metabolites and their effects on stem cells and musculoskeletal systems. The search terms used for a Medline database search were: kynurenine, mesenchymal stem cells, bone loss, tryptophan metabolism, aging, and oxidative stress.


Asunto(s)
Envejecimiento/metabolismo , Sistema Musculoesquelético/metabolismo , Células Madre/metabolismo , Triptófano/metabolismo , Animales , Humanos
8.
Int J Mol Sci ; 21(21)2020 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-33114603

RESUMEN

There is increasing evidence of the involvement of the tryptophan metabolite kynurenine (KYN) in disrupting osteogenesis and contributing to aging-related bone loss. Here, we show that KYN has an effect on bone resorption by increasing osteoclastogenesis. We have previously reported that in vivo treatment with KYN significantly increased osteoclast number lining bone surfaces. Here, we report the direct effect of KYN on receptor activator of nuclear factor kappa-B ligand (RANKL)-induced osteoclastogenesis in Raw 264.7 macrophage cells, and we propose a potential mechanism for these KYN-mediated effects. We show that KYN/RANKL treatment results in enhancement of RANKL-induced osteoclast differentiation. KYN drives upregulation and activation of the key osteoclast transcription factors, c-fos and NFATc1 resulting in an increase in the number of multinucleated TRAP+ osteoclasts, and in hydroxyapatite bone resorptive activity. Mechanistically, the KYN receptor, aryl hydrocarbon receptor (AhR), plays an important role in the induction of osteoclastogenesis. We show that blocking AhR signaling using an AhR antagonist, or AhR siRNA, downregulates the KYN/RANKL-mediated increase in c-fos and NFATc1 and inhibits the formation of multinucleated TRAP + osteoclasts. Altogether, this work highlights that the novelty of the KYN and AhR pathways might have a potential role in helping to regulate osteoclast function with age and supports pursuing additional research to determine if they are potential therapeutic targets for the prevention or treatment of osteoporosis.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Quinurenina/farmacología , Osteogénesis , Ligando RANK/farmacología , Receptores de Hidrocarburo de Aril/metabolismo , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Diferenciación Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Regulación de la Expresión Génica/efectos de los fármacos , Ratones , Factores de Transcripción NFATC/genética , Factores de Transcripción NFATC/metabolismo , Proteínas Proto-Oncogénicas c-fos/genética , Proteínas Proto-Oncogénicas c-fos/metabolismo , Células RAW 264.7 , Receptores de Hidrocarburo de Aril/genética , Receptores de Glutamato/metabolismo , Transducción de Señal/efectos de los fármacos
9.
Biochem Biophys Res Commun ; 517(4): 749-754, 2019 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-31395341

RESUMEN

Recently, muscle has received much attention as an endocrine organ regulating other biological targets, including the pancreas, liver, and adipose tissue. Although there is a possibility that muscle-secreting factors biochemically affect bone metabolism in a paracrine manner, the net effects of myokines on the biology of osteoclasts and osteoblasts, particularly on bone mass in vivo, have not yet been thoroughly investigated. Therefore, we performed in vitro as well as animal experiments using conditioned media (CM) collected from C2C12 myoblast and myotube cultures to better understand the interactions between muscle and bone. Compared with non-CM (i.e., control) and myoblast CM, myotube CM markedly inhibited in vitro bone resorption through the suppression of osteoclast differentiation and resorptive activity of individual osteoclasts. Consistently, the expressions of osteoclast differentiation markers, such as tartrate-resistant acid phosphatase (Trap) and calcitonin receptor (Ctr), decreased with myotube CM. Myotube CM significantly stimulated preosteoblast viability and migration and reduced apoptosis, thereby resulting in an increase in calvaria bone formation. Importantly, systemic treatment with myotube CM for 4 weeks increased bone per tissue volume by 30.7% and 19.6% compared with control and myoblast CM, respectively. These results support the hypothesis that muscle plays beneficial roles in bone health via secretion of anabolic factors, in addition to mechanical stimuli, and importantly indicate that muscle-derived factors can be potential therapeutic targets against metabolic bone diseases.


Asunto(s)
Citocinas/farmacología , Osteoblastos/metabolismo , Osteoclastos/metabolismo , Animales , Resorción Ósea/patología , Línea Celular , Movimiento Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Medios de Cultivo Condicionados/farmacología , Femenino , Ratones Endogámicos C57BL , Fibras Musculares Esqueléticas/metabolismo , Fibras Musculares Esqueléticas/patología , Tamaño de los Órganos/efectos de los fármacos , Osteoblastos/efectos de los fármacos , Osteoblastos/patología , Osteoclastos/efectos de los fármacos , Osteoclastos/patología , Osteogénesis/efectos de los fármacos
10.
Cytokine ; 123: 154783, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31336263

RESUMEN

Musculoskeletal disorders are the leading cause of disability worldwide; two of the most prevalent of which are osteoporosis and sarcopenia. Each affect millions in the aging population across the world and the associated morbidity and mortality contributes to billions of dollars in annual healthcare cost. Thus, it is important to better understand the underlying pathologic mechanisms of the disease process. Regulatory chemokine, CXCL12, and its receptor, CXCR4, are recognized to be essential in the recruitment, localization, maintenance, development and differentiation of progenitor stem cells of the musculoskeletal system. CXCL12 signaling results in the development and functional ability of osteoblasts, osteoclasts, satellite cells and myoblasts critical to maintaining musculoskeletal homeostasis. Interestingly, one suggested pathologic mechanism of osteoporosis and sarcopenia is a decline in the regenerative capacity of musculoskeletal progenitor stem cells. Thus, because CXCL12 is critical to progenitor function, a disruption in the CXCL12 signaling axis might play a distinct role in these pathological processes. Therefore, in this article, we perform a review of CXCL12, its physiologic and pathologic function in bone and muscle, and potential targets for therapeutic development.


Asunto(s)
Huesos/metabolismo , Diferenciación Celular , Quimiocina CXCL12/metabolismo , Músculos/metabolismo , Transducción de Señal , Huesos/patología , Humanos , Músculos/patología , Osteoporosis/metabolismo , Osteoporosis/patología , Receptores CXCR4/metabolismo , Sarcopenia/metabolismo , Sarcopenia/patología , Células Madre/metabolismo , Células Madre/patología
11.
J Physiol ; 601(22): 4835-4836, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36815682
12.
Calcif Tissue Int ; 100(6): 599-608, 2017 06.
Artículo en Inglés | MEDLINE | ID: mdl-28246930

RESUMEN

Aging is associated with an increase in circulating inflammatory factors. One, the cytokine stromal cell-derived factor 1 (SDF-1 or CXCL12), is critical to stem cell mobilization, migration, and homing as well as to bone marrow stem cell (BMSC), osteoblast, and osteoclast function. SDF-1 has pleiotropic roles in bone formation and BMSC differentiation into osteoblasts/osteocytes, and in osteoprogenitor cell survival. The objective of this study was to examine the association of plasma SDF-1 in participants in the cardiovascular health study (CHS) with bone mineral density (BMD), body composition, and incident hip fractures. In 1536 CHS participants, SDF-1 plasma levels were significantly associated with increasing age (p < 0.01) and male gender (p = 0.04), but not with race (p = 0.63). In multivariable-adjusted models, higher SDF-1 levels were associated with lower total hip BMD (p = 0.02). However, there was no significant association of SDF-1 with hip fractures (p = 0.53). In summary, circulating plasma levels of SDF-1 are associated with increasing age and independently associated with lower total hip BMD in both men and women. These findings suggest that SDF-1 levels are linked to bone homeostasis.


Asunto(s)
Composición Corporal/fisiología , Densidad Ósea/inmunología , Quimiocina CXCL12/sangre , Fracturas de Cadera/sangre , Anciano , Anciano de 80 o más Años , Envejecimiento , Densidad Ósea/fisiología , Huesos/metabolismo , Enfermedades Cardiovasculares , Femenino , Humanos , Masculino , Osteoclastos/metabolismo , Factores de Riesgo , Factores Sexuales
13.
Int J Mol Sci ; 18(12)2017 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-29207475

RESUMEN

Traumatic wounds with segmental bone defects represent substantial reconstructive challenges. Autologous bone grafting is considered the gold standard for surgical treatment in many cases, but donor site morbidity and associated post-operative complications remain a concern. Advances in regenerative techniques utilizing mesenchymal stem cell populations from bone and adipose tissue have opened the door to improving bone repair in the limbs, spine, and craniofacial skeleton. The widespread availability, ease of extraction, and lack of immunogenicity have made adipose-derived stem cells (ASCs) particularly attractive as a stem cell source for regenerative strategies. Recently it has been shown that small, non-coding miRNAs are involved in the osteogenic differentiation of ASCs. Specifically, microRNAs such as miR-17, miR-23a, and miR-31 are expressed during the osteogenic differentiation of ASCs, and appear to play a role in inhibiting various steps in bone morphogenetic protein-2 (BMP2) mediated osteogenesis. Importantly, a number of microRNAs including miR-17 and miR-31 that act to attenuate the osteogenic differentiation of ASCs are themselves stimulated by transforming growth factor ß-1 (TGFß-1). In addition, transforming growth factor ß-1 is also known to suppress the expression of microRNAs involved in myogenic differentiation. These data suggest that preconditioning strategies to reduce TGFß-1 activity in ASCs may improve the therapeutic potential of ASCs for musculoskeletal application. Moreover, these findings support the isolation of ASCs from subcutaneous fat depots that tend to have low endogenous levels of TGFß-1 expression.


Asunto(s)
Adipocitos/citología , Proteína Morfogenética Ósea 2/metabolismo , Regeneración Ósea , MicroARNs/genética , Osteogénesis , Diferenciación Celular , Humanos , Trasplante de Células Madre , Células Madre/citología , Células Madre/metabolismo , Grasa Subcutánea/metabolismo , Factor de Crecimiento Transformador beta/metabolismo
14.
Physiology (Bethesda) ; 30(1): 8-16, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25559151

RESUMEN

Aging-induced declines in muscle size and quality are thought to contribute to catabolic alterations in bone, but changes in bone with age also profoundly alter its response to muscle-derived stimuli. This review provides an overview of some of the alterations that occur in muscle and bone with aging, and discusses the cellular and molecular mechanisms that may impact these age-associated changes.


Asunto(s)
Envejecimiento , Huesos/patología , Calcificación Fisiológica/fisiología , Fibras Musculares Esqueléticas/citología , Músculo Esquelético/patología , Animales , Huesos/metabolismo , Humanos , Fibras Musculares Esqueléticas/metabolismo , Músculo Esquelético/metabolismo , Enfermedades Musculares/metabolismo , Enfermedades Musculares/patología , Enfermedades Musculares/fisiopatología
15.
Biochem Biophys Res Commun ; 479(3): 590-595, 2016 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-27671199

RESUMEN

Muscle wasting is estimated to affect 40-60% of alcoholics, and is more common than cirrhosis among chronic alcohol abusers. The molecular and cellular mechanisms underlying alcohol-related musculoskeletal dysfunction are, however, poorly understood. Muscle-specific microRNAs (miRNAs) referred to as myoMirs are now known to play a key role in both myogenesis and muscle atrophy. Yet, no studies have investigated a role for myoMirs in alcohol-related skeletal muscle damage. We developed a zebrafish model of chronic ethanol exposure to better define the mechanisms mediating alcohol-induced muscle atrophy. Adult fish maintained at 0.5% ethanol for eight weeks demonstrated significantly reduced muscle fiber cross-sectional area (∼12%, P < 0.05) compared to fish housed in normal water. Zebrafish miRNA microarray revealed marked changes in several miRNAs with ethanol treatment. Importantly, miR-140, a miRNA that shows 100% sequence homology with miR-140 from both mouse and human, is decreased 10-fold in ethanol treated fish. miR-140 targets several members of the Notch signaling pathway such as DNER, JAG1, and Hey1, and PCR data show that both Hey1 and Notch 1 are significantly up-related (3-fold) in muscle of ethanol treated fish. In addition, miR-146a, which targets the Notch antagonist Numb, is elevated in muscle from ethanol-treated fish. Upregulation of Notch signaling suppresses myogenesis and maintains muscle satellite cell quiescence. These data suggest that miRNAs targeting Notch are likely to play important roles in alcohol-related myopathy. Furthermore, zebrafish may serve as a useful model for better understanding the role of microRNAs in alcohol-related tissue damage.


Asunto(s)
Etanol/efectos adversos , MicroARNs/metabolismo , Músculo Esquelético/efectos de los fármacos , Músculo Esquelético/metabolismo , Atrofia Muscular/inducido químicamente , Receptores Notch/metabolismo , Animales , Proteínas de Homeodominio/metabolismo , Masculino , Proteínas del Tejido Nervioso/metabolismo , Análisis de Secuencia por Matrices de Oligonucleótidos , Reacción en Cadena de la Polimerasa , Reacción en Cadena en Tiempo Real de la Polimerasa , Receptor Notch1/metabolismo , Regulación hacia Arriba , Pez Cebra , Proteínas de Pez Cebra/metabolismo
16.
Calcif Tissue Int ; 95(2): 174-82, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25000990

RESUMEN

We had shown that aromatic amino acid (phenylalanine, tyrosine, and tryptophan) supplementation prevented bone loss in an aging C57BL/6 mice model. In vivo results from the markers of bone breakdown suggested an inhibition of osteoclastic activity or differentiation. To assess osteoclastic differentiation, we examined the effects of aromatic amino acids on early /structural markers as vitronectin receptor, calcitonin receptor, and carbonic anhydrase II as well as, late/functional differentiation markers; cathepsin K and matrix metalloproteinase 9 (MMP-9). Our data demonstrate that the aromatic amino acids down-regulated early and late osteoclastic differentiation markers as measured by real time PCR. Our data also suggest a link between the vitronectin receptor and the secreted cathepsin K that both showed consistent effects to the aromatic amino acid treatment. However, the non-attachment related proteins, calcitonin receptor, and carbonic anhydrase II, demonstrated less consistent effects in response to treatment. Our data are consistent with aromatic amino acids down-regulating osteoclastic differentiation by suppressing remodeling gene expression thus contributing initially to the net increase in bone mass seen in vivo.


Asunto(s)
Aminoácidos Aromáticos/farmacología , Osteoclastos/efectos de los fármacos , Fenilalanina/farmacología , Triptófano/farmacología , Tirosina/farmacología , Animales , Resorción Ósea/metabolismo , Diferenciación Celular/efectos de los fármacos , Células Cultivadas , Dieta , Suplementos Dietéticos , Técnicas In Vitro , Masculino , Ratones , Ratones Endogámicos C57BL , Reacción en Cadena en Tiempo Real de la Polimerasa
17.
BMC Musculoskelet Disord ; 15: 9, 2014 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-24401033

RESUMEN

BACKGROUND: Nutrient levels are known to influence the development of osteoarthritis (OA), presumably by modulating levels of matrix biosynthesis and degradation. These processes may be affected by ascorbic acid (AA), an antioxidant which acts as a cofactor for numerous biochemical reactions and is essential for post-translational modifications of collagen. In this study we examined the expression of SVCT2, the only known Sodium coupled vitamin C transporter isoform present in articular cartilage, in human articular cartilage explants derived from both normal and osteoarthritis articular cartilage. METHODS: OA1 and OA3 human articular cartilage was carefully dissected and macroscopically graded for degeneration via the Collins scale. The tissue samples were histologically examined by Hematoxylin and Eosin and Safranin O and Fast Green staining. SVCT2 expression analysis was performed at mRNA level by quantitative real time PCR and at a protein level by immunohistochemistry. RESULTS: Our quantitative real time PCR showed marked variation in the expression of SVCT2 in human osteoarthritic articular cartilage. SVCT2 expression was significantly down-regulated (p = 0.0001) in the Collins grade 3 (OA3) compared to Collins grade 1 (OA1) tissue. Furthermore, slides stained with fluorescent antibodies to SVCT2 demonstrated greatly reduced fluorescence for the SVCT2 transporter on the chondrocyte plasma membrane in the osteoarthritic tissue samples. CONCLUSIONS: These findings demonstrate that the expression of SVCT2 transporter is significantly altered in human osteoarthritic tissues (OA3). The modulation of this transporter could therefore potentially influence the prevention, management and treatment of osteoarthritis.


Asunto(s)
Cartílago Articular/química , Condrocitos/química , Osteoartritis de la Rodilla/metabolismo , Transportadores de Sodio Acoplados a la Vitamina C/análisis , Anciano , Cartílago Articular/patología , Condrocitos/patología , Regulación hacia Abajo , Femenino , Humanos , Inmunohistoquímica , Masculino , Persona de Mediana Edad , Osteoartritis de la Rodilla/genética , Osteoartritis de la Rodilla/patología , ARN Mensajero/análisis , Reacción en Cadena en Tiempo Real de la Polimerasa , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Índice de Severidad de la Enfermedad , Transportadores de Sodio Acoplados a la Vitamina C/genética
18.
Bone ; 184: 117086, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38552893

RESUMEN

PURPOSE: Mitofusin 2 (Mfn2) is one of two mitofusins involved in regulating mitochondrial size, shape and function, including mitophagy, an important cellular mechanism to limit oxidative stress. Reduced expression of Mfn2 has been associated with impaired osteoblast differentiation and function and a reduction in the number of viable osteocytes in bone. We hypothesized that the genetic absence of Mfn2 in these cells would increase their susceptibility to aging-associated metabolic stress, leading to a progressive impairment in skeletal homeostasis over time. METHODS: Mfn2 was selectively deleted in vivo at three different stages of osteoblast lineage commitment by crossing mice in which the Mfn2 gene was floxed with transgenic mice expressing Cre under the control of the promoter for Osterix (OSX), collagen1a1, or DMP1 (Dentin Matrix Acidic Phosphoprotein 1). RESULTS: Mice in which Mfn2 was deleted using DMP1-cre demonstrated a progressive and dramatic decline in bone mineral density (BMD) beginning at 10 weeks of age (n = 5 for each sex and each genotype from age 10 to 20 weeks). By 15 weeks, there was evidence for a functional decline in muscle performance as assessed using a rotarod apparatus (n = 3; 2 males/ 1 female for each genotype), accompanied by a decline in lean body mass. A marked reduction in trabecular bone mass was evident on bone histomorphometry, and biomechanical testing at 25 weeks (k/o: 2 male/1 female, control 2 male/2 female) revealed severely impaired femur strength. Extensive regional myofiber atrophy and degeneration was observed on skeletal muscle histology. Electron microscopy showed progressive disruption of cellular architecture, with disorganized sarcomeres and a bloated mitochondrial reticulum. There was also evidence of neurodegeneration within the ventral horn and roots of the lumbar spinal cord, which was accompanied by myelin loss and myofiber atrophy. Deletion of Mfn2 using OSX-cre or Col1a1-cre did not result in a musculoskeletal phenotype. Where possible, male and female animals were analyzed separately, but small numbers of animals in each group limited statistical power. For other outcomes, where sex was not considered, small sample sizes might still limit the strength of the observation. CONCLUSION: Despite known functional overlap of Mfn1 and Mfn2 in some tissues, and their co-expression in bone, muscle and spinal cord, deletion of Mfn2 using the 8 kB DMP1 promoter uncovered an important non-redundant role for Mfn2 in maintaining the neuromuscular/bone axis.


Asunto(s)
Densidad Ósea , GTP Fosfohidrolasas , Animales , Femenino , GTP Fosfohidrolasas/metabolismo , GTP Fosfohidrolasas/genética , Masculino , Ratones , Densidad Ósea/genética , Densidad Ósea/fisiología , Ratones Transgénicos , Músculo Esquelético/metabolismo , Músculo Esquelético/patología , Huesos/patología , Huesos/metabolismo , Unión Neuromuscular/metabolismo , Unión Neuromuscular/patología , Osteoblastos/metabolismo , Proteínas Mitocondriales/metabolismo , Proteínas Mitocondriales/genética
19.
Bone ; 186: 117147, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38866124

RESUMEN

We and others have seen that osteocytes sense high-impact osteogenic mechanical loading via transient plasma membrane disruptions (PMDs) which initiate downstream mechanotransduction. However, a PMD must be repaired for the cell to survive this wounding event. Previous work suggested that the protein Prkd1 (also known as PKCµ) may be a critical component of this PMD repair process, but the specific role of Prkd1 in osteocyte mechanobiology had not yet been tested. We treated MLO-Y4 osteocytes with Prkd1 inhibitors (Go6976, kbNB 142-70, staurosporine) and generated an osteocyte-targeted (Dmp1-Cre) Prkd1 conditional knockout (CKO) mouse. PMD repair rate was measured via laser wounding and FM1-43 dye uptake, PMD formation and post-wounding survival were assessed via fluid flow shear stress (50 dyn/cm2), and in vitro osteocyte mechanotransduction was assessed via measurement of calcium signaling. To test the role of osteocyte Prkd1 in vivo, Prkd1 CKO and their wildtype (WT) littermates were subjected to 2 weeks of unilateral axial tibial loading and loading-induced changes in cortical bone mineral density, geometry, and formation were measured. Prkd1 inhibition or genetic deletion slowed osteocyte PMD repair rate and impaired post-wounding cell survival. These effects could largely be rescued by treating osteocytes with the FDA-approved synthetic copolymer Poloxamer 188 (P188), which was previously shown to facilitate membrane resealing and improve efficiency in the repair rate of PMD in skeletal muscle myocytes. In vivo, while both WT and Prkd1 CKO mice demonstrated anabolic responses to tibial loading, the magnitude of loading-induced increases in tibial BMD, cortical thickness, and periosteal mineralizing surface were blunted in Prkd1 CKO as compared to WT mice. Prkd1 CKO mice also tended to show a smaller relative difference in the number of osteocyte PMD in loaded limbs and showed greater lacunar vacancy, suggestive of impaired post-wounding osteocyte survival. While P188 treatment rescued loading-induced increases in BMD in the Prkd1 CKO mice, it surprisingly further suppressed loading-induced increases in cortical bone thickness and cortical bone formation. Taken together, these data suggest that Prkd1 may play a pivotal role in the regulation and repair of the PMD response in osteocytes and support the idea that PMD repair processes can be pharmacologically targeted to modulate downstream responses, but suggest limited utility of PMD repair-promoting P188 in improving bone anabolic responses to loading.


Asunto(s)
Membrana Celular , Ratones Noqueados , Osteocitos , Animales , Osteocitos/metabolismo , Osteocitos/efectos de los fármacos , Membrana Celular/metabolismo , Ratones , Mecanotransducción Celular/efectos de los fármacos , Proteína Quinasa C/metabolismo
20.
Sci Adv ; 10(17): eadl1088, 2024 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-38669339

RESUMEN

A sharp drop in lenticular glutathione (GSH) plays a pivotal role in age-related cataract (ARC) formation. Despite recognizing GSH's importance in lens defense for decades, its decline with age remains puzzling. Our recent study revealed an age-related truncation affecting the essential GSH biosynthesis enzyme, the γ-glutamylcysteine ligase catalytic subunit (GCLC), at aspartate residue 499. Intriguingly, these truncated GCLC fragments compete with full-length GCLC in forming a heterocomplex with the modifier subunit (GCLM) but exhibit markedly reduced enzymatic activity. Crucially, using an aspartate-to-glutamate mutation knock-in (D499E-KI) mouse model that blocks GCLC truncation, we observed a notable delay in ARC formation compared to WT mice: Nearly 50% of D499E-KI mice remained cataract-free versus ~20% of the WT mice at their age of 20 months. Our findings concerning age-related GCLC truncation might be the key to understanding the profound reduction in lens GSH with age. By halting GCLC truncation, we can rejuvenate lens GSH levels and considerably postpone cataract onset.


Asunto(s)
Envejecimiento , Dominio Catalítico , Catarata , Glutamato-Cisteína Ligasa , Glutatión , Cristalino , Catarata/patología , Catarata/genética , Catarata/metabolismo , Animales , Glutamato-Cisteína Ligasa/metabolismo , Glutamato-Cisteína Ligasa/genética , Ratones , Glutatión/metabolismo , Cristalino/metabolismo , Cristalino/patología , Envejecimiento/metabolismo , Humanos , Modelos Animales de Enfermedad , Mutación , Técnicas de Sustitución del Gen
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA