Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
Mol Cancer ; 23(1): 125, 2024 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-38849860

RESUMEN

BACKGROUND: Breast cancer is the most common malignant tumor, and metastasis remains the major cause of poor prognosis. Glucose metabolic reprogramming is one of the prominent hallmarks in cancer, providing nutrients and energy to support dramatically elevated tumor growth and metastasis. Nevertheless, the potential mechanistic links between glycolysis and breast cancer progression have not been thoroughly elucidated. METHODS: RNA-seq analysis was used to identify glucose metabolism-related circRNAs. The expression of circSIPA1L3 in breast cancer tissues and serum was examined by qRT-PCR, and further assessed its diagnostic value. We also evaluated the prognostic potential of circSIPA1L3 by analyzing a cohort of 238 breast cancer patients. Gain- and loss-of-function experiments, transcriptomic analysis, and molecular biology experiments were conducted to explore the biological function and regulatory mechanism of circSIPA1L3. RESULTS: Using RNA-seq analysis, circSIPA1L3 was identified as the critical mediator responsible for metabolic adaption upon energy stress. Gain- and loss-of-function experiments revealed that circSIPA1L3 exerted a stimulative effect on breast cancer progression and glycolysis, which could also be transported by exosomes and facilitated malignant behaviors among breast cancer cells. Significantly, the elevated lactate secretion caused by circSIPA1L3-mediated glycolysis enhancement promoted the recruitment of tumor associated macrophage and their tumor-promoting roles. Mechanistically, EIF4A3 induced the cyclization and cytoplasmic export of circSIPA1L3, which inhibited ubiquitin-mediated IGF2BP3 degradation through enhancing the UPS7-IGF2BP3 interaction. Furthermore, circSIPA1L3 increased mRNA stability of the lactate export carrier SLC16A1 and the glucose intake enhancer RAB11A through either strengthening their interaction with IGF2BP3 or sponging miR-665, leading to enhanced glycolytic metabolism. Clinically, elevated circSIPA1L3 expression indicated unfavorable prognosis base on the cohort of 238 breast cancer patients. Moreover, circSIPA1L3 was highly expressed in the serum of breast cancer patients and exhibited high diagnostic value for breast cancer patients. CONCLUSIONS: Our study highlights the oncogenic role of circSIPA1L3 through mediating glucose metabolism, which might serve as a promising diagnostic and prognostic biomarker and potential therapeutic target for breast cancer.


Asunto(s)
Progresión de la Enfermedad , Exosomas , Regulación Neoplásica de la Expresión Génica , Glucosa , ARN Circular , Neoplasias de la Mama Triple Negativas , Humanos , Femenino , Exosomas/metabolismo , ARN Circular/genética , Glucosa/metabolismo , Ratones , Neoplasias de la Mama Triple Negativas/metabolismo , Neoplasias de la Mama Triple Negativas/patología , Neoplasias de la Mama Triple Negativas/genética , Animales , Pronóstico , Glucólisis , Línea Celular Tumoral , Biomarcadores de Tumor/metabolismo , Proliferación Celular , Reprogramación Metabólica , Proteínas de la Membrana , Péptidos y Proteínas de Señalización Intracelular
2.
Breast Cancer Res ; 25(1): 109, 2023 09 28.
Artículo en Inglés | MEDLINE | ID: mdl-37770991

RESUMEN

BACKGROUND: Triple-negative breast cancer (TNBC) is a subtype of breast cancer with higher aggressiveness and poorer outcomes. Recently, long non-coding RNAs (lncRNAs) have become the crucial gene regulators in the progression of human cancers. However, the function and underlying mechanisms of lncRNAs in TNBC remains unclear. METHODS: Based on public databases and bioinformatics analyses, the low expression of lncRNA MIDEAS-AS1 in breast cancer tissues was detected and further validated in a cohort of TNBC tissues. The effects of MIDEAS-AS1 on proliferation, migration, invasion were determined by in vitro and in vivo experiments. RNA pull-down assay and RNA immunoprecipitation (RIP) assay were carried out to reveal the interaction between MIDEAS-AS1 and MATR3. Luciferase reporter assay, Chromatin immunoprecipitation (ChIP) and qRT-PCR were used to evaluate the regulatory effect of MIDEAS-AS1/MATR3 complex on NCALD. RESULTS: LncRNA MIDEAS-AS1 was significantly downregulated in TNBC, which was correlated with poor overall survival (OS) and progression-free survival (PFS) in TNBC patients. MIDEAS-AS1 overexpression remarkably inhibited tumor growth and metastasis in vitro and in vivo. Mechanistically, MIDEAS-AS1 mainly located in the nucleus and interacted with the nuclear protein MATR3. Meanwhile, NCALD was selected as the downstream target, which was transcriptionally regulated by MIDEAS-AS1/MATR3 complex and further inactivated NF-κB signaling pathway. Furthermore, rescue experiment showed that the suppression of cell malignant phenotype caused by MIDEAS-AS1 overexpression could be reversed by inhibition of NCALD. CONCLUSIONS: Collectively, our results demonstrate that MIDEAS-AS1 serves as a tumor-suppressor in TNBC through modulating MATR3/NCALD axis, and MIDEAS-AS1 may function as a prognostic biomarker for TNBC.


Asunto(s)
MicroARNs , Neurocalcina , ARN Largo no Codificante , Neoplasias de la Mama Triple Negativas , Humanos , Línea Celular Tumoral , Proliferación Celular/genética , Regulación Neoplásica de la Expresión Génica , MicroARNs/genética , Neurocalcina/genética , Neurocalcina/metabolismo , Proteínas Asociadas a Matriz Nuclear/genética , Proteínas Asociadas a Matriz Nuclear/metabolismo , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Proteínas de Unión al ARN/genética , Neoplasias de la Mama Triple Negativas/genética , Neoplasias de la Mama Triple Negativas/patología
3.
Mol Ther ; 30(1): 415-430, 2022 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-34450253

RESUMEN

The protein-coding ability of circular RNAs (circRNAs) has recently been a hot topic, but the expression and roles of protein-coding circRNAs in triple-negative breast cancer (TNBC) remain uncertain. By intersecting circRNA sequencing data from clinical samples and cell lines, we identified a circRNA, termed circ-EIF6, which predicted a poorer prognosis and correlated with clinicopathological characteristics in a cohort of TNBC patients. Functionally, we showed that circ-EIF6 promoted the proliferation and metastasis of TNBC cells in vitro and in vivo. Mechanistically, we found that circ-EIF6 contains a 675-nucleotide (nt) open reading frame (ORF) and that the -150-bp sequence from ATG functioned as an internal ribosome entry site (IRES), which is required for translation initiation in 5' cap-independent coding RNAs. circ-EIF6 encodes a novel peptide, termed EIF6-224 amino acid (aa), which is responsible for the oncogenic effects of circ-EIF6. The endogenous expression of EIF6-224aa was further examined in TNBC cells and tissues by specific antibody. Moreover, EIF6-224aa directly interacted with MYH9, an oncogene in breast cancer, and decreased MYH9 degradation by inhibiting the ubiquitin-proteasome pathway and subsequently activating the Wnt/beta-catenin pathway. Our study provided novel insights into the roles of protein-coding circRNAs and supported circ-EIF6/EIF6-224aa as a novel promising prognostic and therapeutic target for tailored therapy in TNBC patients.


Asunto(s)
MicroARNs , Neoplasias de la Mama Triple Negativas , Línea Celular Tumoral , Proliferación Celular/genética , Regulación Neoplásica de la Expresión Génica , Humanos , MicroARNs/genética , Cadenas Pesadas de Miosina/genética , Neoplasias de la Mama Triple Negativas/genética , Neoplasias de la Mama Triple Negativas/patología , beta Catenina/genética , beta Catenina/metabolismo
4.
Mol Cancer ; 19(1): 85, 2020 05 08.
Artículo en Inglés | MEDLINE | ID: mdl-32384893

RESUMEN

BACKGROUND: Long noncoding RNAs (lncRNAs) play crucial roles in tumor progression and are aberrantly expressed in various cancers. However, the functional roles of lncRNAs in breast cancer remain largely unknown. METHODS: Based on public databases and integrating bioinformatics analyses, the overexpression of lncRNA BCRT1 in breast cancer tissues was detected and further validated in a cohort of breast cancer tissues. The effects of lncRNA BCRT1 on proliferation, migration, invasion and macrophage polarization were determined by in vitro and in vivo experiments. Luciferase reporter assay and RNA immunoprecipitation (RIP) were carried out to reveal the interaction between lncRNA BCRT1, miR-1303, and PTBP3. Chromatin immunoprecipitation (ChIP) and RT-PCR were used to evaluate the regulatory effect of hypoxia-inducible factor-1α (HIF-1α) on lncRNA BCRT1. RESULTS: LncRNA BCRT1 was significantly upregulated in breast cancer tissues, which was correlated with poor prognosis in breast cancer patients. LncRNA BCRT1 knockdown remarkably suppressed tumor growth and metastasis in vitro and in vivo. Mechanistically, lncRNA BCRT1 could competitively bind with miR-1303 to prevent the degradation of its target gene PTBP3, which acts as a tumor-promoter in breast cancer. LncRNA BCRT1 overexpression could promote M2 polarization of macrophages, mediated by exosomes, which further accelerated breast cancer progression. Furthermore, lncRNA BCRT1 was upregulated in response to hypoxia, which was attributed to the binding of HIF-1α to HREs in the lncRNA BCRT1 promoter. CONCLUSIONS: Collectively, these results reveal a novel HIF-1α/lncRNA BCRT1/miR-1303/PTBP3 pathway for breast cancer progression and suggest that lncRNA BCRT1 might be a potential biomarker and therapeutic target for breast cancer.


Asunto(s)
Biomarcadores de Tumor/metabolismo , Neoplasias de la Mama/patología , Regulación Neoplásica de la Expresión Génica , MicroARNs/genética , Proteína de Unión al Tracto de Polipirimidina/metabolismo , ARN Largo no Codificante/genética , Animales , Apoptosis , Biomarcadores de Tumor/genética , Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , Proliferación Celular , Progresión de la Enfermedad , Femenino , Humanos , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Proteína de Unión al Tracto de Polipirimidina/genética , Pronóstico , Células Tumorales Cultivadas , Ensayos Antitumor por Modelo de Xenoinjerto
5.
Mol Ther ; 27(9): 1638-1652, 2019 09 04.
Artículo en Inglés | MEDLINE | ID: mdl-31153828

RESUMEN

Tamoxifen is the most commonly used endocrine therapy for patients with hormone receptor (HR)-positive breast cancer. Despite its initial therapeutic efficacy, many patients eventually develop drug resistance, which remains a serious clinical challenge. To investigate roles of circular RNAs (circRNAs) in tamoxifen resistance, a tamoxifen-resistant MCF-7 cell line was established and screened for its circRNA expression profile by RNA sequencing. hsa_circ_0025202, a circRNA that was significantly downregulated, was selected for further investigation. Using a large cohort of clinical specimens, we found that hsa_circ_0025202 exhibited low expression in cancer tissues and was negatively correlated with lymphatic metastasis and histological grade. Gain- and loss-of-function assays indicated that hsa_circ_0025202 could inhibit cell proliferation, colony formation, and migration and increase cell apoptosis and sensitivity to tamoxifen. Bioinformatics and luciferase reporter assays verified that hsa_circ_0025202 could act as a miRNA sponge for miR-182-5p and further regulate the expression and activity of FOXO3a. Functional studies revealed that tumor inhibition and tamoxifen sensitization effects of hsa_circ_0025202 were achieved via the miR-182-5p/FOXO3a axis. Moreover, in vivo experiments confirmed that hsa_circ_0025202 could suppress tumor growth and enhance tamoxifen efficacy. Taken together, hsa_circ_0025202 served an anti-oncogenic role in HR-positive breast cancer, and it could be exploited as a novel marker for tamoxifen-resistant breast cancer.


Asunto(s)
Neoplasias de la Mama/genética , Resistencia a Antineoplásicos/genética , Factores de Transcripción Forkhead/genética , Regulación Neoplásica de la Expresión Génica , MicroARNs/genética , ARN Circular/genética , Tamoxifeno/farmacología , Regiones no Traducidas 3' , Adulto , Anciano , Animales , Apoptosis/genética , Biomarcadores de Tumor , Neoplasias de la Mama/patología , Línea Celular Tumoral , Movimiento Celular/genética , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Femenino , Técnicas de Silenciamiento del Gen , Xenoinjertos , Humanos , Ratones , Persona de Mediana Edad , Estadificación de Neoplasias , Interferencia de ARN
8.
Oncogene ; 43(23): 1742-1756, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38609499

RESUMEN

Triple-negative breast cancer (TNBC) is an exceptionally aggressive subtype of breast cancer. Despite the recognized interplay between tumors and tumor-associated macrophages in fostering drug resistance and disease progression, the precise mechanisms leading these interactions remain elusive. Our study revealed that the upregulation of collagen type V alpha 1 (COL5A1) in TNBC tissues, particularly in chemoresistant samples, was closely linked to an unfavorable prognosis. Functional assays unequivocally demonstrated that COL5A1 played a pivotal role in fueling cancer growth, metastasis, and resistance to doxorubicin, both in vitro and in vivo. Furthermore, we found that the cytokine IL-6, produced by COL5A1-overexpressing TNBC cells actively promoted M2 macrophage polarization. In turn, TGFß from M2 macrophages drived TNBC doxorubicin resistance through the TGFß/Smad3/COL5A1 signaling pathway, establishing a feedback loop between TNBC cells and macrophages. Mechanistically, COL5A1 interacted with TGM2, inhibiting its K48-linked ubiquitination-mediated degradation, thereby enhancing chemoresistance and increasing IL-6 secretion. In summary, our findings underscored the significant contribution of COL5A1 upregulation to TNBC progression and chemoresistance, highlighting its potential as a diagnostic and therapeutic biomarker for TNBC.


Asunto(s)
Colágeno Tipo V , Progresión de la Enfermedad , Resistencia a Antineoplásicos , Neoplasias de la Mama Triple Negativas , Humanos , Neoplasias de la Mama Triple Negativas/patología , Neoplasias de la Mama Triple Negativas/metabolismo , Neoplasias de la Mama Triple Negativas/genética , Femenino , Colágeno Tipo V/metabolismo , Colágeno Tipo V/genética , Ratones , Animales , Línea Celular Tumoral , Resistencia a Antineoplásicos/genética , Macrófagos/metabolismo , Macrófagos/patología , Interleucina-6/metabolismo , Interleucina-6/genética , Doxorrubicina/farmacología , Macrófagos Asociados a Tumores/metabolismo , Macrófagos Asociados a Tumores/patología , Transducción de Señal , Proteína Glutamina Gamma Glutamiltransferasa 2/metabolismo , Factor de Crecimiento Transformador beta/metabolismo , Regulación Neoplásica de la Expresión Génica , Proteínas de Unión al GTP/metabolismo , Proteínas de Unión al GTP/genética
9.
Adv Sci (Weinh) ; : e2404628, 2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-38981022

RESUMEN

Triple-negative breast cancer (TNBC) is the most malignant subtype of breast cancer. TP53, which has a mutation rate of ≈70%-80% in TNBC patients, plays oncogenic roles when mutated. However, whether circRNAs can exert their effects on TNBC through regulating mutant TP53 has not been well evaluated. In this study, circCFL1, which is highly expressed in TNBC cells and tissues and has prognostic potential is identified. Functionally, circCFL1 promoted the proliferation, metastasis and stemness of TNBC cells. Mechanistically, circCFL1 acted as a scaffold to enhance the interaction between HDAC1 and c-Myc, further promoting the stability of c-Myc via deacetylation-mediated inhibition of K48-linked ubiquitylation. Stably expressed c-Myc further enhanced the expression of mutp53 in TNBC cells with TP53 mutations by directly binding to the promoter of TP53, which promoted the stemness of TNBC cells via activation of the p-AKT/WIP/YAP/TAZ pathway. Moreover, circCFL1 can facilitate the immune escape of TNBC cells by promoting the expression of PD-L1 and suppressing the antitumor immunity of CD8+ T cells. In conclusion, the results revealed that circCFL1 plays an oncogenic role by promoting the HDAC1/c-Myc/mutp53 axis, which can serve as a potential diagnostic biomarker and therapeutic target for TNBC patients with TP53 mutations.

10.
Cell Death Dis ; 15(7): 542, 2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-39079960

RESUMEN

Breast cancer remains a significant global health challenge, and its mechanisms of progression and metastasis are still not fully understood. In this study, analysis of TCGA and GEO datasets revealed a significant increase in CCT2 expression in breast cancer tissues, which was associated with poor prognosis in breast cancer patients. Functional analysis revealed that CCT2 promoted breast cancer growth and metastasis through activation of the JAK2/STAT3 signaling pathway. Additionally, the E3 ubiquitin ligase Trim21 facilitated CCT2 ubiquitination and degradation, significantly reversing the protumor effects of CCT2. Most interestingly, we discovered that exosomal CCT2 derived from breast cancer cells suppressed the activation and proinflammatory cytokine secretion of CD4+ T cell. Mechanistically, exosomal CCT2 constrained Ca2+-NFAT1 signaling, thereby reducing CD40L expression on CD4+ T cell. These findings highlight CCT2 upregulation as a potential driver of breast cancer progression and immune evasion. Our study provides new insights into the molecular mechanisms underlying breast cancer progression, suggesting that CCT2 is a promising therapeutic target and prognostic predictor for breast cancer.


Asunto(s)
Neoplasias de la Mama , Linfocitos T CD4-Positivos , Progresión de la Enfermedad , Ribonucleoproteínas , Ubiquitinación , Humanos , Neoplasias de la Mama/patología , Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , Femenino , Linfocitos T CD4-Positivos/metabolismo , Linfocitos T CD4-Positivos/inmunología , Animales , Ribonucleoproteínas/metabolismo , Ribonucleoproteínas/genética , Ratones , Línea Celular Tumoral , Transducción de Señal , Activación de Linfocitos , Regulación Neoplásica de la Expresión Génica , Ratones Desnudos , Proliferación Celular , Ratones Endogámicos BALB C , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitina-Proteína Ligasas/genética , Pronóstico
11.
Trends Mol Med ; 29(8): 599-621, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37328395

RESUMEN

Ubiquitin-proteasome system (UPS) is a selective proteolytic system that is associated with the expression or function of target proteins and participates in various physiological and pathological processes of breast cancer. Inhibitors targeting the 26S proteasome in combination with other drugs have shown promising therapeutic effects in the clinical treatment of breast cancer. Moreover, several inhibitors/stimulators targeting other UPS components are also effective in preclinical studies, but have not yet been applied in the clinical treatment of breast cancer. Therefore, it is vital to comprehensively understand the functions of ubiquitination in breast cancer and to identify potential tumor promoters or tumor suppressors among UPS family members, with the aim of developing more effective and specific inhibitors/stimulators targeting specific components of this system.


Asunto(s)
Neoplasias de la Mama , Ubiquitina , Humanos , Femenino , Ubiquitina/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Neoplasias de la Mama/tratamiento farmacológico , Ubiquitinación
12.
Cell Death Dis ; 14(7): 434, 2023 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-37454220

RESUMEN

Chemoresistance is one of the major causes of therapeutic failure and poor prognosis for breast cancer patients, especially for triple-negative breast cancer patients. However, the underlying mechanism remains elusive. Here, we identified novel functional roles of heat shock protein beta-1 (HSPB1), regulating chemoresistance and ferroptotic cell death in breast cancer. Based on TCGA and GEO databases, HSPB1 expression was upregulated in breast cancer tissues and associated with poor prognosis of breast cancer patients, which was considered an independent prognostic factor for breast cancer. Functional assays revealed that HSPB1 could promote cancer growth and metastasis in vitro and in vivo. Furthermore, HSPB1 facilitated doxorubicin (DOX) resistance through protecting breast cancer cells from drug-induced ferroptosis. Mechanistically, HSPB1 could bind with Ikß-α and promote its ubiquitination-mediated degradation, leading to increased nuclear translocation and activation of NF-κB signaling. In addition, HSPB1 overexpression led to enhanced secretion of IL6, which further facilitated breast cancer progression. These findings revealed that HSPB1 upregulation might be a key driver to progression and chemoresistance through regulating ferroptosis in breast cancer while targeting HSPB1 could be an effective strategy against breast cancer.


Asunto(s)
Neoplasias de la Mama , Neoplasias de la Mama Triple Negativas , Humanos , Femenino , FN-kappa B/metabolismo , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , Proteínas de Choque Térmico HSP27/genética , Proteínas de Choque Térmico HSP27/metabolismo , Resistencia a Antineoplásicos , Transducción de Señal , Muerte Celular , Línea Celular Tumoral , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Chaperonas Moleculares/metabolismo
13.
Cell Death Dis ; 14(7): 471, 2023 07 26.
Artículo en Inglés | MEDLINE | ID: mdl-37495592

RESUMEN

Breast cancer is the major common malignancy worldwide among women. Previous studies reported that cancer-associated fibroblasts (CAFs) showed pivotal roles in regulating tumor progression via exosome-mediated cellular communication. However, the detailed mechanism underlying the exosomal circRNA from CAFs in breast cancer progression remains ambiguous. Here, exosomal circRNA profiling of breast cancer-derived CAFs and normal fibroblasts (NFs) was detected by high-throughput sequencing, and upregulated circTBPL1 expression was identified in CAF exosomes. The exosomal circTBPL1 from CAFs could be transferred to breast cancer cells and promoted cell proliferation, migration, and invasion. Consistently, circTBPL1 knockdown in CAFs attenuated their tumor-promoting ability. Further exploration identified miR-653-5p as an inhibitory target of circTBPL1, and ectopic expression of miR-653-5p could partially reverse the malignant phenotypes induced by circTBPL1 overexpression in breast cancer. Additionally, TPBG was selected as a downstream target gene, and circTBPL1 could protect TPBG from miR-653-5p-mediated degradation, leading to enhanced breast cancer progression. Significantly, the accelerated tumor progression triggered by exosomal circTBPL1 from CAFs was confirmed in xenograft models. Taken together, these results revealed that exosomal circTBPL1 derived from CAFs contributed to cancer progression via miR-653-5p/TPBG pathway, indicating the potential of exosomal circTBPL1 as a biomarker and novel therapeutic target for breast cancer.


Asunto(s)
Neoplasias de la Mama , Fibroblastos Asociados al Cáncer , Exosomas , MicroARNs , Humanos , Femenino , Fibroblastos Asociados al Cáncer/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , ARN Circular/metabolismo , Línea Celular Tumoral , Comunicación Celular , Neoplasias de la Mama/patología , Fibroblastos/metabolismo , Proliferación Celular/genética , Exosomas/metabolismo , Regulación Neoplásica de la Expresión Génica
14.
Cell Death Dis ; 14(7): 482, 2023 07 31.
Artículo en Inglés | MEDLINE | ID: mdl-37524698

RESUMEN

Dysregulated ERα signaling is responsible for endocrine resistance and eventual relapse in patients with estrogen receptor-positive (ER+) breast cancer. Thus, identifying novel ERα regulators is necessary to fully understand the mechanisms of endocrine resistance. Here, we identified circRNA-SFMBT2 to be highly expressed in ER+ breast cancer cells in comparison to ER- cells and found that high circRNA-SFMBT2 levels were related to larger tumor size and poor prognosis in patients with ER+ breast cancer. In vitro and in vivo experiments confirmed that the circRNA-SFMBT2 level was positively correlated with the ERα protein level, implying a regulatory role for circRNA-SFMBT2 in ERα signaling. Moreover, we found that circRNA-SFMBT2 biogenesis could be facilitated via RNA-binding protein quaking (QKI), and biologically elevated circRNA-SFMBT2 expression promoted cell growth and tamoxifen resistance in ER+ breast cancer. Mechanistically, circRNA-SFMBT2 exhibits a specific tertiary structure that endows it with a high binding affinity for ERα and allows it to interact with the AF2 and DBD domains of ERα, enforcing recruitment of RNF181 to the AF1 domain of ERα. Furthermore, the circRNA-SFMBT2/RNF181 axis differentially regulated K48-linked and K63-linked ubiquitination of ERα to enhance ERα stability, resulting in increased expression of ERα target genes and tumor progression. In summary, circRNA-SFMBT2 is an important regulator of ERα signaling, and antagonizing circRNA-SFMBT2 expression may constitute a potential therapeutic strategy for breast cancer.


Asunto(s)
Neoplasias de la Mama , Tamoxifeno , Humanos , Femenino , Tamoxifeno/farmacología , Tamoxifeno/uso terapéutico , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Receptores de Estrógenos/metabolismo , Receptor alfa de Estrógeno/genética , Receptor alfa de Estrógeno/metabolismo , ARN Circular/genética , Regulación Neoplásica de la Expresión Génica , Resistencia a Antineoplásicos/genética , Recurrencia Local de Neoplasia/genética , Línea Celular Tumoral , Ubiquitina-Proteína Ligasas/metabolismo , Proteínas Represoras/metabolismo
15.
Cell Death Discov ; 8(1): 261, 2022 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-35568705

RESUMEN

Triple-negative breast cancer (TNBC) is a molecular subtype with an unfavorable prognosis, and metastasis is the main reason for the failure of clinical treatment. However, the expression profile and regulatory function of circRNAs in TNBC progression are not fully understood. Herein, we performed high-throughput RNA-seq in paired breast cancer tissues and adjacent normal tissues and discovered a novel circRNA, circEIF3H, which was upregulated in breast cancer tissues. Large cohort survival analysis confirmed the association between high circEIF3H expression and poor prognosis of TNBC, indicating the vital function of circEIF3H in TNBC progression. Then we conducted both in vitro and in vivo experiments which illustrated that circEIF3H was essential for TNBC proliferation and metastasis. Further experiments showed that circEIF3H did not function as a microRNA sponge as in the most well-established pathway, but as a scaffold for IGF2BP2 and HuR to regulate the mRNA stability of HSPD1, RBM8A, and G3BP1. Our findings provide insight into a novel circRNA, circEIF3H, with significant cancer-promoting function via serving as a scaffold for IGF2BP2/HuR. These results identified circEIF3H as a potential target for developing individualized therapy of TNBC in the approaching future.

16.
Adv Sci (Weinh) ; 9(25): e2201701, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35843886

RESUMEN

Estrogen receptor alpha (ER-α) action is critical for hormone-dependent breast cancer, and ER-α dysregulation can lead to the emergence of resistance to endocrine therapy. Here, it is found that TRIM4 is downregulated in tamoxifen (TAM)-resistant breast cancer cells, while the loss of TRIM4 is associated with an unfavorable prognosis. In vitro and in vivo experiments confirm that TRIM4 increased ER-α expression and the sensitivity of breast cancer cells to TAM. Mechanistically, TRIM4 is found to target SET, and TRIM4-SET interactions are mediated by the RING and B-box domains of TRIM4 and the carboxyl terminus of SET. Moreover, it is determined that TRIM4 catalyzed the K48-linked polyubiquitination of SET (K150 and K172), promoting its proteasomal degradation and disassociation from p53 and PP2A. Once released, p53 and PP2A are able to further promote ESR1 gene transcription and enhance mRNA stability. Moreover, univariate and multivariate Cox proportional hazards regression analyses confirm that TRIM4 expression is an independent predictor of overall survival and recurrence-free survival outcomes in patients with ER-α positive breast cancer. Taken together, the data highlights a previously undiscovered mechanism and suggest that TRIM4 is a valuable biomarker that can be analyzed to predict response to endocrine therapy in breast cancer patients.


Asunto(s)
Neoplasias de la Mama , Neoplasias de la Mama/genética , Proteínas de Unión al ADN , Receptor alfa de Estrógeno , Femenino , Chaperonas de Histonas , Humanos , Tamoxifeno/farmacología , Proteínas de Motivos Tripartitos , Proteína p53 Supresora de Tumor , Ubiquitina/metabolismo , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo
17.
J Crohns Colitis ; 15(12): 2103-2117, 2021 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-33987665

RESUMEN

Macrophages in the intestinal mucosa can rapidly engage Toll-like receptor [TLR]-mediated inflammatory responses to protect against pathogen invasion, but these same innate immune responses can also drive the induction of colitis. Our previous research revealed that metadherin [MTDH] is overexpressed in multiple cancers and plays vital roles in tumour progression. However, the role of MTDH in intestinal inflammation is largely unknown. In this study, we found the MTDH expression in colonic lamina propria [CLP] macrophages was positively correlated with inflammatory colitis severity. MTDH-/- mice were protected against the symptoms of dextran sodium sulphate [DSS]-induced colitis; however, adoptive transfer of MTDH wild-type [WT] monocytes partially restored the susceptibility of MTDH-/- mice to DSS-induced colitis. TLR stimulation was sufficient to induce the expression of MTDH, whereas the absence of MTDH was sufficient to suppress TLR-induced production of inflammatory cytokines by macrophages. From a mechanistic perspective, MTDH recruited TRAF6 to TAK1, leading to TRAF6-mediated TAK1 K63 ubiquitination and phosphorylation, ultimately facilitating TLR-induced NF-κB and MAPK signalling. Taken together, our results indicate that MTDH contributes to colitis development by promoting TLR-induced pro-inflammatory cytokine production in CLP macrophages and might represent a potential therapeutic approach for intestine inflammation intervention.


Asunto(s)
Colitis Ulcerosa/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas de Unión al ARN/metabolismo , Receptores Toll-Like/metabolismo , Animales , Colitis Ulcerosa/patología , Modelos Animales de Enfermedad , Femenino , Inflamación , Macrófagos , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Índice de Severidad de la Enfermedad
18.
Front Oncol ; 11: 660242, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34513664

RESUMEN

BACKGROUND: Recent years, the global prevalence of breast cancer (BC) was still high and the underlying molecular mechanisms remained largely unknown. The investigation of prognosis-related biomarkers had become an urgent demand. RESULTS: In this study, gene expression profiles and clinical information of breast cancer patients were downloaded from the TCGA database. The differentially expressed genes (DEGs) were estimated by Gene Ontology (GO) analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis. A risk score formula involving five novel prognostic associated biomarkers (EDN2, CLEC3B, SV2C, WT1, and MUC2) were then constructed by LASSO. The prognostic value of the risk model was further confirmed in the TCGA entire cohort and an independent external validation cohort. To explore the biological functions of the selected genes, in vitro assays were performed, indicating that these novel biomarkers could markedly influence breast cancer progression. CONCLUSIONS: We established a predictive five-gene signature, which could be helpful for a personalized management in breast cancer patients.

19.
Mol Ther Nucleic Acids ; 26: 1079-1091, 2021 Dec 03.
Artículo en Inglés | MEDLINE | ID: mdl-34786212

RESUMEN

Breast cancer is one of the most lethal malignancies among women; however, the underlying molecular mechanism involved in the progression and metastasis of breast cancer remains unclear. Numerous studies have confirmed that long noncoding RNAs are abnormally expressed in breast cancer and play crucial roles in cell proliferation and metastasis. In the study, we evaluated the functional role and detailed mechanism of DGUOK-AS1 in breast cancer progression and metastasis. DGUOK-AS1 knockdown suppressed proliferation, migration, and invasion of breast cancer cells in vitro and in vivo. Mechanistically, miR-204-5p was identified as an inhibitory target of DGUOK-AS1, which served as a tumor suppressor in breast cancer. Significantly, we found that the ectopic expression of miR-204-5p could counteract DGUOK-AS1-mediated promotion of cell proliferation and metastasis in breast cancer. Moreover, IL-11 was found to be the downstream target of miR-204-5p, and DGUOK-AS1 could protect IL-11 from miR-204-5p-mediated degradation. DGUOK-AS1 overexpression promoted breast cancer cell migration, angiogenesis, and macrophage migration, mediating by the increased secretion of IL-11, which was extremely important for cancer progression. Collectively, our studies reveal that DGUOK-AS1/miR-204-5p/IL-11 axis plays a significant role in the progression and metastasis of breast cancer, and DGUOK-AS1 might be a novel biomarker and therapeutic target for breast cancer.

20.
Front Oncol ; 11: 657094, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33869063

RESUMEN

Long non-coding RNAs(lncRNAs) play an important role in cancer initiation and progression. However, hub lncRNAs involved in breast cancer still remain underexplored. In this study, integrated bioinformatics analysis was used to define LINC01977 as a key oncogenic driver in breast cancer. Subsequently, in vitro assays showed that LINC01977 could significantly promote breast cancer progression and chemoresistance to doxorubicin. To further investigate its biological mechanism, we performed dual-luciferase reporter assay, real-time PCR, RNA immunoprecipitation (RIP), and rescue assay. Our results indicated that LINC01977 may function as ceRNA to prevent GOLM1 gene from miRNA-mediated repression by sponging miR-212-3p. Overall, LINC01977 can serve as a novel prognostic indicator, and help develop more effective therapeutic approaches for breast cancer patients.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA