Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Int J Mol Sci ; 24(12)2023 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-37373110

RESUMEN

Syringetin, an active compound present in red grapes, jambolan fruits, Lysimachia congestiflora, and Vaccinium ashei, is a dimethyl myricetin derivative which contains free hydroxyl groups at the C-2' and C-4' positions in ring B. Recent studies have revealed that syringetin possesses multiple pharmacological properties, such as antitumor, hepatoprotective, antidiabetic, antioxidative, and cytoprotective activities. To date, there has been no attempt to test the action of syringetin on melanogenesis. In addition, the molecular mechanism for the melanogenic effects of syringetin remains largely unknown. In this study, we investigated the effect of syringetin on melanogenesis in a murine melanoma cell line from a C57BL/6J mouse, B16F10. Our results showed that syringetin markedly stimulated melanin production and tyrosinase activity in a concentration-dependent manner in B16F10 cells. We also found that syringetin increased MITF, tyrosinase, TRP-1, and TRP-2 protein expression. Moreover, syringetin inhibited ERK and PI3K/Akt phosphorylation by stimulating p38, JNK, PKA phosphorylation levels, subsequently stimulating MITF and TRP upregulation, resulting in the activation of melanin synthesis. Furthermore, we observed that syringetin activated phosphorylation of GSK3ß and ß-catenin and reduced the protein level of ß-catenin, suggesting that syringetin stimulates melanogenesis through the GSK3ß/ß-catenin signal pathway. Finally, a primary skin irritation test was conducted on the upper backs of 31 healthy volunteers to determine the irritation or sensitization potential of syringetin for topical application. The results of the test indicated that syringetin did not cause any adverse effects on the skin. Taken together, our findings indicated that syringetin may be an effective pigmentation stimulator for use in cosmetics and in the medical treatment of hypopigmentation disorders.


Asunto(s)
Melaninas , Melanoma Experimental , Animales , Ratones , Melaninas/metabolismo , Monofenol Monooxigenasa/metabolismo , beta Catenina , Glucógeno Sintasa Quinasa 3 beta , Fosfatidilinositol 3-Quinasas , Ratones Endogámicos C57BL , Línea Celular Tumoral , Factor de Transcripción Asociado a Microftalmía/metabolismo , Melanoma Experimental/patología
2.
Molecules ; 28(5)2023 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-36903321

RESUMEN

The repurposing of already-approved drugs has emerged as an alternative strategy to rapidly identify effective, safe, and conveniently available new therapeutic indications against human diseases. The current study aimed to assess the repurposing of the anticoagulant drug acenocoumarol for the treatment of chronic inflammatory diseases (e.g., atopic dermatitis and psoriasis) and investigate the potential underlying mechanisms. For this purpose, we used murine macrophage RAW 264.7 as a model in experiments aimed at investigating the anti-inflammatory effects of acenocoumarol in inhibiting the production of pro-inflammatory mediators and cytokines. We demonstrate that acenocoumarol significantly decreases nitric oxide (NO), prostaglandin (PG)E2, tumor necrosis factor (TNF)-α, interleukin (IL)-6, and IL-1ß levels in lipopolysaccharide (LPS)-stimulated RAW 264.7 cells. Acenocoumarol also inhibits the expression of NO synthase (iNOS) and cyclooxygenase (COX)-2, potentially explaining the acenocoumarol-induced decrease in NO and PGE2 production. In addition, acenocoumarol inhibits the phosphorylation of mitogen-activated protein kinases (MAPKs), c-Jun N terminal kinase (JNK), p38 MAPK, and extracellular signal-regulated kinase (ERK), in addition to decreasing the subsequent nuclear translocation of nuclear factor κB (NF-κB). This indicates that acenocoumarol attenuates the macrophage secretion of TNF-α, IL-6, IL-1ß, and NO, inducing iNOS and COX-2 expression via the inhibition of the NF-κB and MAPK signaling pathways. In conclusion, our results demonstrate that acenocoumarol can effectively attenuate the activation of macrophages, suggesting that acenocoumarol is a potential candidate for drug repurposing as an anti-inflammatory agent.


Asunto(s)
Acenocumarol , FN-kappa B , Animales , Ratones , Antiinflamatorios/farmacología , Ciclooxigenasa 2/metabolismo , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Interleucina-6/metabolismo , Lipopolisacáridos/farmacología , FN-kappa B/metabolismo , Óxido Nítrico/metabolismo , Óxido Nítrico Sintasa de Tipo II/metabolismo , Células RAW 264.7 , Factor de Necrosis Tumoral alfa/metabolismo
3.
Cancer Sci ; 113(6): 2097-2108, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35325509

RESUMEN

MicroRNAs are reported as promising biomarkers for the diagnosis and treatment of breast cancer. miR-1260b is identified as a tumor-associated noncoding microRNA in other cancers, although the role of miR-1260b and its clinical relevance in breast cancer remain unclear. In this study, miR-1260b as a potential prognostic biomarker was observed by univariate and multivariate Cox regression analyses in 102 breast tumor tissues. The tumorigenic role of miR-1260b in terms of proliferation, apoptosis, and migration of breast cancer cells was investigated using gain- and loss-of-function assays in vitro. Additionally, the potential early diagnosis and treatment monitoring marker of miR-1260b was validated in 129 plasma samples. We found that high miR-1260b expression was markedly associated with bulky tumor size, advanced stage, and lymph node invasion. Particularly, the high-miR-1260b-expression group showed shorter overall survival than the low-miR-1260b-expression group. The inhibition of oncogenic miR-1260b induced apoptosis and decreased migration and invasion of MDA-MB-231 cells. CASP8 was revealed as a direct target gene of miR-1260b, which is closely related to apoptosis. Furthermore, miR-1260b expression levels in plasma were significantly higher in patients with breast cancer than in healthy controls. The patients who tested positive for miR-1260b showed 16.3- and 18.2-fold higher risks in the early stage and locally advanced stage, respectively, compared with healthy controls, and the risk was decreased 6.2-fold after neoadjuvant chemotherapy. Taken together, miR-1260b may be a potential novel diagnostic, prognostic, and therapeutic target in breast cancer.


Asunto(s)
Neoplasias de la Mama , Caspasa 8 , MicroARNs , Apoptosis/genética , Biomarcadores de Tumor/genética , Neoplasias de la Mama/diagnóstico , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Carcinogénesis/genética , Caspasa 8/metabolismo , Línea Celular Tumoral , Movimiento Celular/genética , Proliferación Celular/genética , Femenino , Regulación Neoplásica de la Expresión Génica , Humanos , MicroARNs/genética , Pronóstico
4.
Int J Clin Oncol ; 20(5): 878-90, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25708591

RESUMEN

BACKGROUND: Breast cancer is a highly prevalent disease among women worldwide. While the expression of certain proteins within breast cancer tumors is used to determine the prognosis and select therapies, additional markers need to be identified. Circulating tumor cells (CTCs) are constituent cells that have detached from a primary tumor to circulate in the bloodstream. CTCs are considered the main source of breast cancer metastases; therefore, detection of CTCs could be a promising diagnostic method for metastatic breast cancer. METHODS: In this study, the CircleGen CTC RT-qDx assay was used to analyze the mRNA expression levels of six CTC-specific markers including EpCAM, CK19, HER2, Ki67, hTERT, and vimentin with a total of 692 peripheral whole blood samples from 221 breast cancer patients and 376 healthy individuals. RESULTS: This assay showed high specificity with multiple markers; none of the healthy controls were detected positive, whereas 21.7 and 14 % of breast cancer patients were positive for EpCAM and CK19, respectively. Of the 221 breast cancer patients, 84 (38 %), 46 (20.8 %), 83 (37.6 %), and 39 (17.6 %) were positively for HER2, Ki67, hTERT, and vimentin mRNA, respectively. Of the 84 patients who were HER2 positive, nine (4 %) were also positive for EpCAM, CK19, Ki67, hTERT, and vimentin. Of the 139 breast cancer patients who were HER2 negative, 65 (29.1 %) were negative for EpCAM, CK19, Ki67, hTERT, and vimentin. Furthermore, the EpCAM-positive population decreased from 21.5 to 8.3 % after completion of anti-tumor treatment (TP4). Similarly, the CK19, HER2, hTERT, and vimentin positives also decreased from 13.9 to 9.5 %, from 37.7 to 21.4 %, from 37.2 to 33.3 %, and from 17.5 to 14.3 %, respectively, after completion of anti-tumor treatment. In contrast, the Ki67 positives increased from 20.6 to 41.7 % after completion of anti-tumor treatment. CONCLUSIONS: mRNA overexpression of six CTC-specific markers was detected by the CircleGen CTC RT-qDx assay with high specificity, and the obtained mRNA expression levels of CTC-specific markers might provide useful criteria to select appropriate anti-tumor treatment for breast cancer patients.


Asunto(s)
Biomarcadores de Tumor/metabolismo , Neoplasias de la Mama/metabolismo , Células Neoplásicas Circulantes/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Adulto , Biomarcadores de Tumor/sangre , Biomarcadores de Tumor/genética , Neoplasias de la Mama/sangre , Neoplasias de la Mama/genética , Femenino , Humanos , Persona de Mediana Edad , Adulto Joven
5.
Exp Mol Pathol ; 97(3): 445-52, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25217799

RESUMEN

Circulating tumor cells (CTCs) are an independent prognostic factor for patients with breast cancer. However, the role of CTCs in early breast cancer management is not yet clearly defined. The aim of this study was to isolate and characterize CTCs in blood sample of a breast cancer patient as a biomarker for monitoring treatments efficacy. In this study, 692 blood samples from 221 breast cancer patients and 376 healthy individuals was used to detect CTCs with multiple markers including epithelial cell adhesion molecule (EpCAM), cytokeratin (CK) 19, human epidermal growth factor (HER) 2, Ki67, human telomerase reverse transcriptase (hTERT), and vimentin using quantitative reverse transcription PCR (RT-qPCR). A total of 153 (69.2%) blood samples of 221 patients with breast cancer were found to be positive for at least one of the cancer-associated marker gene before treatment. After chemotherapy, no CTCs were found in 28 (33.3%) of the 84 blood samples analyzed for the presence of CTCs using the RT-qPCR, whereas 56 (66.7%) blood samples were still found to be positive for at least one of the markers. After completing the therapy, the CTC positivity rate decreased to 7 (20.6%) in the neoadjuvant group, whereas this increased to 7 (14%) cases in the adjuvant group. There was no statistically significant relationship between TNM stage and detection of CTC-related markers. Data from this study suggest that RT-qPCR assay for the detection of CTC markers might be useful in selecting appropriate therapeutics and for monitoring treatment efficacy in breast cancer patients.


Asunto(s)
Biomarcadores de Tumor/sangre , Neoplasias de la Mama/patología , Células Neoplásicas Circulantes , Reacción en Cadena en Tiempo Real de la Polimerasa/métodos , Adulto , Anciano , Antineoplásicos/uso terapéutico , Neoplasias de la Mama/sangre , Neoplasias de la Mama/terapia , Femenino , Humanos , Mastectomía , Persona de Mediana Edad , Células Neoplásicas Circulantes/efectos de los fármacos , Células Neoplásicas Circulantes/patología , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
6.
Pharmaceuticals (Basel) ; 16(4)2023 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-37111361

RESUMEN

Hyperpigmentation can occur in abnormal skin conditions such as melanomas, as well as in conditions including melasma, freckles, age spots, seborrheic keratosis, and café-au-lait spots (flat brown spots). Thus, there is an increasing need for the development of depigmenting agents. We aimed to repurpose an anticoagulant drug as an effective ingredient against hyperpigmentation and apply cosmeceutical agents. In the present study, the anti-melanogenic effects of two anticoagulant drugs, acenocoumarol and warfarin, were investigated. The results showed that both acenocoumarol and warfarin did not cause any cytotoxicity and resulted in a significant reduction in intracellular tyrosinase activity and melanin content in B16F10 melanoma cells. Additionally, acenocoumarol inhibits the expression of melanogenic enzymes such as tyrosinase, tyrosinase-related protein (TRP)-1, and TRP-2, suppressing melanin synthesis through a cAMP-dependent, protein kinase (PKA)-dependent downregulation of microphthalmia-associated transcription factor (MITF), a master transcription factor in melanogenesis. Furthermore, anti-melanogenic effects were exerted by acenocoumarol through downregulation of the p38 and JNK signaling pathway and upregulation of extracellular signal-regulated kinase (ERK) and phosphatidylinositol 3 kinase (PI3K)/protein kinase B (Akt)/glycogen synthesis kinase-3ß (GSK-3ß) cascades. In addition, the ß-catenin content in the cell cytoplasm and nucleus was increased by acenocoumarol through a reduction in the phosphorylated ß-catenin (p-ß-catenin content). Finally, we tested the potential of acenocoumarol for topical applications by conducting primary human skin irritation tests. Acenocoumarol did not induce any adverse reactions during these tests. Based on the results, it can be concluded that acenocoumarol regulates melanogenesis through various signaling pathways such as PKA, MAPKs, PI3K/Akt/GSK-3ß, and ß-catenin. These findings suggest that acenocoumarol has the potential to be repurposed as a drug for treating hyperpigmentation symptoms and could provide new insights into the development of therapeutic approaches for hyperpigmentation disorders.

7.
Oncotarget ; 9(2): 2622-2630, 2018 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-29416796

RESUMEN

CD44+/CD24- or aldehyde dehydrogenase 1 (ALDH1) has been suggested as a potential marker for breast cancer stem cells. In the cohort of 819 patients with resected ER-positive breast cancer, the '5-year relapse group' within 5 years postsurgery during adjuvant tamoxifen treatment and the 'non-relapse group' longer than 9 years postsurgery were defined. Paraffin-embedded tumor tissues were available in 31 patients from 5-year relapse group and 68 from the non-relapse group. CD44/ CD24 and ALDH1 expression was evaluated by immunohistochemical staining. Phenotypes of CD44/CD24 were CD44+/CD24- in one patient (1%), CD44+/CD24+in one patient (1%), CD44-/CD24+ in 12 patients (12%), and CD44-/CD24- in 67 patients (68%). Four patients (4%) showed ALDH1-positivity. Due to the rarity of CD44-positivity or ALDH1-positivity, we dichotomized the patients into CD24-positive status (13%, 13/99 patients) and CD24-negative status (87%, 86/99 patients) only based on CD24 status, and only the status of CD24 was further analyzed. CD24-positivity was higher in the 5-year relapse group (32%) than in the non-relapse group (4%). CD24-positivity was associated with negative PR (P=0.026), higher N stage (P=0.029), and higher histologic grade (P=0.034). However, in the multivariate logistic regression adjusted for the known prognostic factors, CD24-positivity was still a significant predictive factor for 5-year relapse (hazard ratio=8.5; P=0.006). Our results indicated that the expression of CD24 was a significant poor prognostic factor in ER-positive early breast cancer treated with adjuvant tamoxifen. CD24 is worth further investigation as a novel biomarker for tamoxifen resistance beyond general aggressiveness of cancer cells.

8.
Oncotarget ; 7(17): 24677-87, 2016 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-27013581

RESUMEN

The dissemination of circulating tumor cells (CTCs) requires the Epithelial-to-Mesenchymal transition (EMT), in which cells lose their epithelial characteristics and acquire more mesenchymal-like phenotypes. Current isolation of CTCs relies on affinity-based approaches reliant on the expression of Epithelial Cell Adhesion Molecule (EpCAM). Here we show EMT-induced breast cancer cells maintained in prolonged mammosphere culture conditions possess increased EMT markers and cancer stem cell markers, as well as reduced cell mass and size by quantitative phase microscopy; however, EpCAM expression is dramatically decreased in these cells. Moreover, CTCs isolated from breast cancer patients using a label-free microfluidic flow fractionation device had differing expression patterns of EpCAM, indicating that affinity approaches reliant on EpCAM expression may underestimate CTC number and potentially miss critical subpopulations. Further characterization of CTCs, including low-EpCAM populations, using this technology may improve detection techniques and cancer diagnosis, ultimately improving cancer treatment.


Asunto(s)
Neoplasias de la Mama/metabolismo , Molécula de Adhesión Celular Epitelial/metabolismo , Células Neoplásicas Circulantes/metabolismo , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Molécula de Adhesión Celular Epitelial/genética , Transición Epitelial-Mesenquimal , Femenino , Humanos , Células MCF-7 , Metástasis de la Neoplasia , Células Neoplásicas Circulantes/patología
9.
Biosens Bioelectron ; 40(1): 206-12, 2013 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-22857995

RESUMEN

Circulating tumor cells (CTCs) are dissociated from primary tumor and circulate in peripheral blood. They are regarded as the genesis of metastasis. Isolation and enumeration of CTCs serve as valuable tools for cancer prognosis and diagnosis. However, the rarity and heterogeneity of CTCs in blood makes it difficult to separate intact CTCs without loss. In this paper, we introduce a parallel multi-orifice flow fractionation (p-MOFF) device in which a series of contraction/expansion microchannels are placed parallel on a chip forming four identical channels. CTCs were continuously isolated from the whole blood of breast cancer patients by hydrodynamic forces and cell size differences. Blood samples from 24 breast cancer patients were analyzed (half were from metastatic breast cancer patients and the rest were from adjuvant breast cancer patients). The number of isolated CTCs varied from 0 to 21 in 7.5 ml of blood. Because our devices do not require any labeling processes (e.g., EpCAM antibody), heterogeneous CTCs can be isolated regardless of EpCAM expression.


Asunto(s)
Neoplasias de la Mama/patología , Separación Celular/instrumentación , Separación Celular/métodos , Citometría de Flujo/instrumentación , Técnicas Analíticas Microfluídicas/instrumentación , Células Neoplásicas Circulantes/patología , Línea Celular Tumoral , Fraccionamiento Químico/instrumentación , Diseño de Equipo , Análisis de Falla de Equipo , Humanos
10.
Lab Chip ; 11(6): 1118-25, 2011 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-21298159

RESUMEN

Circulating tumor cells (CTCs) are highly correlated with the invasive behavior of cancer, so their isolations and quantifications are important for biomedical applications such as cancer prognosis and measuring the responses to drug treatments. In this paper, we present the development of a microfluidic device for the separation of CTCs from blood cells based on the physical properties of cells. For use as a CTC model, we successfully separated human breast cancer cells (MCF-7) from a spiked blood cell sample by combining multi-orifice flow fractionation (MOFF) and dielectrophoretic (DEP) cell separation technique. Hydrodynamic separation takes advantage of the massive and high-throughput filtration of blood cells as it can accommodate a very high flow rate. DEP separation plays a role in precise post-processing to enhance the efficiency of the separation. The serial combination of these two different sorting techniques enabled high-speed continuous flow-through separation without labeling. We observed up to a 162-fold increase in MCF-7 cells at a 126 µL min(-1) flow rate. Red and white blood cells were efficiently removed with separation efficiencies of 99.24% and 94.23% respectively. Therefore, we suggest that our system could be used for separation and detection of CTCs from blood cells for biomedical applications.


Asunto(s)
Neoplasias de la Mama/sangre , Separación Celular/métodos , Electroforesis/métodos , Células Neoplásicas Circulantes , Línea Celular Tumoral , Separación Celular/instrumentación , Femenino , Humanos , Hidrodinámica , Técnicas Analíticas Microfluídicas/instrumentación , Técnicas Analíticas Microfluídicas/métodos
11.
Cell Transplant ; 20(9): 1321-32, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21294957

RESUMEN

Islet transplantation is limited by the difficulties in isolating the pancreatic islets from the cadaveric donor and maintaining them in culture. To increase islet viability and function after isolation, here we present a novel culture technique involving an histone deacetylase inhibitor (HDACi) to rejuvenate the isolated islets. Pancreatic islets were isolated from Sprague-Dawley (SD) rats and one group (FIs; freshly isolated islets) was used after overnight culture and the other group (RIs; rejuvenated islet) was subjected to rejuvenation culture procedure, which is composed of three discrete steps including degranulation, chromatin remodeling, and regranulation. FIs and RIs were compared with regard to intracellular insulin content, glucose-stimulated insulin secretion (GSIS) capacity, gene expression profile, viability and apoptosis rate under oxidative stresses, and the engraftment efficacy in the xenogeneic islet transplantation models. RIs have been shown to have 1.9 ± 0.28- and 1.7 ± 0.31-fold greater intracellular insulin content and GSIS capacity, respectively, than FIs. HDACi increased overall histone acetylation levels, with inducing increased expression of many genes including insulin 1, insulin 2, GLUT2, and Ogg1. This enhanced islet capacity resulted in more resistance against oxidative stresses and increase of the engraftment efficacy shown by reduction of twofold marginal mass of islets in xenogeneic transplantation model. In conclusion, a novel rejuvenating culture technique using HDACi as chromatin remodeling agents improved the function and viability of the freshly isolated islets, contributing to the reduction of islet mass for the control of hyperglycemia in islet transplantation.


Asunto(s)
Técnicas de Cultivo/métodos , Diabetes Mellitus Experimental/tratamiento farmacológico , Inhibidores de Histona Desacetilasas/uso terapéutico , Islotes Pancreáticos/patología , Animales , Apoptosis/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Diabetes Mellitus Experimental/sangre , Diabetes Mellitus Experimental/complicaciones , Diabetes Mellitus Experimental/patología , Regulación de la Expresión Génica/efectos de los fármacos , Glucosa/farmacología , Inhibidores de Histona Desacetilasas/farmacología , Hiperglucemia/sangre , Hiperglucemia/complicaciones , Hiperglucemia/tratamiento farmacológico , Hiperglucemia/patología , Insulina/metabolismo , Secreción de Insulina , Células Secretoras de Insulina/efectos de los fármacos , Células Secretoras de Insulina/patología , Espacio Intracelular/metabolismo , Islotes Pancreáticos/efectos de los fármacos , Islotes Pancreáticos/metabolismo , Trasplante de Islotes Pancreáticos , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Tamaño de los Órganos/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Ratas , Ratas Sprague-Dawley , Rejuvenecimiento
12.
Acta Diabetol ; 46(3): 243-8, 2009 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-19030773

RESUMEN

Islet transplantation is a promising therapeutic option for type 1 diabetes, and actively performed in the clinic as well as in the animal experiments. For the rodent experiments, islet transplantation into kidney subcapsule is widely used to assess islet quality, however, it is often difficult to do using a polyethylene tubing and fine needle because of inherent dead volume of needle and stickiness of the tubing to islets. This problem makes it difficult to interpret the physiological response to different islet doses. Here, we developed a simple fibrin gel carrier system for islet transplantation into kidney subcapsule and utilized it to determine the marginal islet mass sufficient for correction of hyperglycemia in diabetic nude mice.


Asunto(s)
Diabetes Mellitus Experimental/cirugía , Adhesivo de Tejido de Fibrina/uso terapéutico , Trasplante de Islotes Pancreáticos/métodos , Riñón/cirugía , Animales , Glucemia/metabolismo , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/patología , Modelos Animales de Enfermedad , Insulina/metabolismo , Islotes Pancreáticos/patología , Islotes Pancreáticos/cirugía , Riñón/patología , Ratones , Ratones Desnudos , Ratas , Ratas Sprague-Dawley
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA