Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Sensors (Basel) ; 24(7)2024 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-38610293

RESUMEN

The implementation of a progressive rehabilitation training model to promote patients' motivation efforts can greatly restore damaged central nervous system function in patients. Patients' active engagement can be effectively stimulated by assist-as-needed (AAN) robot rehabilitation training. However, its application in robotic therapy has been hindered by a simple determination method of robot-assisted torque which focuses on the evaluation of only the affected limb's movement ability. Moreover, the expected effect of assistance depends on the designer and deviates from the patient's expectations, and its applicability to different patients is deficient. In this study, we propose a control method with personalized treatment features based on the idea of estimating and mapping the stiffness of the patient's healthy limb. This control method comprises an interactive control module in the task-oriented space based on the quantitative evaluation of motion needs and an inner-loop position control module for the pneumatic swing cylinder in the joint space. An upper-limb endpoint stiffness estimation model was constructed, and a parameter identification algorithm was designed. The upper limb endpoint stiffness which characterizes the patient's ability to complete training movements was obtained by collecting surface electromyographic (sEMG) signals and human-robot interaction forces during patient movement. Then, the motor needs of the affected limb when completing the same movement were quantified based on the performance of the healthy limb. A stiffness-mapping algorithm was designed to dynamically adjust the rehabilitation training trajectory and auxiliary force of the robot based on the actual movement ability of the affected limb, achieving AAN control. Experimental studies were conducted on a self-developed pneumatic upper limb rehabilitation robot, and the results showed that the proposed AAN control method could effectively estimate the patient's movement needs and achieve progressive rehabilitation training. This rehabilitation training robot that simulates the movement characteristics of the patient's healthy limb drives the affected limb, making the intensity of the rehabilitation training task more in line with the patient's pre-morbid limb-use habits and also beneficial for the consistency of bilateral limb movements.


Asunto(s)
Robótica , Humanos , Extremidad Superior , Movimiento (Física) , Movimiento , Algoritmos
2.
Sensors (Basel) ; 23(15)2023 Aug 04.
Artículo en Inglés | MEDLINE | ID: mdl-37571735

RESUMEN

Passive rehabilitation training in the early poststroke period can promote the reshaping of the nervous system. The trajectory should integrate the physicians' experience and the patient's characteristics. And the training should have high accuracy on the premise of safety. Therefore, trajectory customization, optimization, and tracking control algorithms are conducted based on a new upper limb rehabilitation robot. First, joint friction and initial load were identified and compensated. The admittance algorithm was used to realize the trajectory customization. Second, the improved butterfly optimization algorithm (BOA) was used to optimize the nonuniform rational B-spline fitting curve (NURBS). Then, a variable gain control strategy is designed, which enables the robot to track the trajectory well with small human-robot interaction (HRI) forces and to comply with a large HRI force to ensure safety. Regarding the return motion, an error subdivision method is designed to slow the return movement. The results showed that the customization force is less than 6 N. The trajectory tracking error is within 12 mm without a large HRI force. The control gain starts to decrease in 0.5 s periods while there is a large HRI force, thereby improving safety. With the decrease in HRI force, the real position can return to the desired trajectory slowly, which makes the patient feel comfortable.


Asunto(s)
Robótica , Rehabilitación de Accidente Cerebrovascular , Humanos , Algoritmos , Movimiento , Robótica/métodos , Extremidad Superior/fisiología
3.
Micromachines (Basel) ; 15(7)2024 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-39064430

RESUMEN

The morphology size of laser cladding is a crucial parameter that significantly impacts the quality and performance of the cladding layer. This study proposes a predictive model for the cladding morphology size based on the Least Squares Support Vector Regression (LSSVR) and the Crowned Porcupine Optimization (CPO) algorithm. Specifically, the proposed model takes three key parameters as inputs: laser power, scanning speed, and powder feeding rate, with the width and height of the cladding layer as outputs. To further enhance the predictive accuracy of the LSSVR model, a CPO-based optimization strategy is applied to adjust the penalty factor and kernel parameters. Consequently, the CPO-LSSVR model is established and evaluated against the LSSVR model and the Genetic Algorithm-optimized Backpropagation Neural Network (GA-BP) model in terms of relative error metrics. The experimental results demonstrate that the CPO-LSSVR model can achieve a significantly improved relative error of no more than 2.5%, indicating a substantial enhancement in predictive accuracy compared to other methods and showcasing its superior predictive performance. The high accuracy of the CPO-LSSVR model can effectively guide the selection of laser cladding process parameters and thereby enhance the quality and efficiency of the cladding process.

4.
Materials (Basel) ; 15(15)2022 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-35955184

RESUMEN

Clarifying the influence of the dress process parameters of the abrasive water jet on the dressing effect of fixed-abrasive pads (FAPs) is a prerequisite for online controllable dressing of abrasive water jets. This paper uses three factors and three horizontal response surface methods to explore the influence of jet pressure, abrasive concentration, and nozzle angle on FAP dressing quality. The prediction model of the material removal rate of a FAP machined using three process parameters is established. The influence of pairwise interactions of the three process parameter variables on the dressing effect and the optimal process parameters under each target is analyzed. Finally, the optimal process parameters predicted by the model are verified by experiments. The results show that the best dressing parameters with the MRR of the workpiece as the response value are as follows: jet pressure 3.8 MPa, abrasive concentration 3%, and nozzle angle 73°. The predicted value of the optimal process performance is 464.574 nm/min, and the experimental verification result is 469.136 nm/min; the error between the experimental value and the predicted value is within a reasonable range.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA