Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
Brain Behav Immun ; 119: 454-464, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38642614

RESUMEN

BACKGROUND: Both functional brain imaging studies and autopsy reports have indicated the presence of synaptic loss in the brains of depressed patients. The activated microglia may dysfunctionally engulf neuronal synapses, leading to synaptic loss and behavioral impairments in depression. However, the mechanisms of microglial-synaptic interaction under depressive conditions remain unclear. METHODS: We utilized lipopolysaccharide (LPS) to induce a mouse model of depression, examining the effects of LPS on behaviors, synapses, microglia, microglial phagocytosis of synapses, and the C1q/C3-CR3 complement signaling pathway. Additionally, a C1q neutralizing antibody was employed to inhibit the C1q/C3-CR3 signaling pathway and assess its impact on microglial phagocytosis of synapses and behaviors in the mice. RESULTS: LPS administration resulted in depressive and anxiety-like behaviors, synaptic loss, and abnormal microglial phagocytosis of synapses in the hippocampal dentate gyrus (DG) of mice. We found that the C1q/C3-CR3 signaling pathway plays a crucial role in this abnormal microglial activity. Treatment with the C1q neutralizing antibody moderated the C1q/C3-CR3 pathway, leading to a decrease in abnormal microglial phagocytosis, reduced synaptic loss, and improved behavioral impairments in the mice. CONCLUSIONS: The study suggests that the C1q/C3-CR3 complement signaling pathway, which mediates abnormal microglial phagocytosis of synapses, presents a novel potential therapeutic target for depression treatment.


Asunto(s)
Complemento C1q , Complemento C3 , Depresión , Modelos Animales de Enfermedad , Microglía , Fagocitosis , Transducción de Señal , Sinapsis , Animales , Complemento C1q/metabolismo , Microglía/metabolismo , Sinapsis/metabolismo , Ratones , Transducción de Señal/fisiología , Depresión/metabolismo , Fagocitosis/fisiología , Complemento C3/metabolismo , Masculino , Lipopolisacáridos/farmacología , Ratones Endogámicos C57BL
2.
J Integr Neurosci ; 23(1): 11, 2024 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-38287859

RESUMEN

Parkinson's disease (PD) is a chronic neurodegenerative disease whose main pathological features are the degeneration of dopamine neurons and deposition of α-synuclein in neurons. At present, the most important treatment strategy for PD is drugs, and one of the most used drugs is levodopa. However, this therapy shows many problems, such as tolerance and long-term effects, so other treatment strategies need to be explored. As a traditional Chinese medicine treatment method with effective and few side effects, electroacupuncture is considered a non-drug therapy. It serves as a novel, promising therapeutic approach for the treatment of PD. In this review, the application and the effects of electroacupuncture on PD have been described. Besides, the underlying molecular mechanisms of electroacupuncture on PD that contribute to protecting dopaminergic neurons and reducing α-synuclein levels have been illustrated, including ① anti-oxidant stress response, ② anti-neuroinflammatory response, ③ up-regulation of neurotrophic factors and reduction of nerve cell apoptosis, ④ down-regulation of endoplasmic reticulum stress and improvement of mitochondrial function, ⑤ improvement of the function of the ubiquitin-proteasome system, ⑥ anti-excitatory toxicity response, ⑦ activation of autophagy, and ⑧ modulation of gut microbiota. Achieving a better understanding of the neuroprotective effects of electroacupuncture on PD will provide a theoretical basis and facilitate the application of electroacupuncture on PD.


Asunto(s)
Electroacupuntura , Enfermedades Neurodegenerativas , Fármacos Neuroprotectores , Enfermedad de Parkinson , Humanos , alfa-Sinucleína , Fármacos Neuroprotectores/farmacología , Enfermedades Neurodegenerativas/patología , Neuronas Dopaminérgicas/patología
3.
Neurobiol Dis ; 169: 105743, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35490927

RESUMEN

Depression is one of the most prevalent mental illnesses in the world today, and the onset of depression is usually accompanied by neuroinflammation and impaired adult neurogenesis. As a new potential member of the endocannabinoid (eCB) system, G protein coupled receptor 55 (GPR55) has been associated with mood regulation. However, the role of GPR55 in the pathophysiology of depression remains poorly understood. Thus, a 10-day chronic social defeat stress (CSDS) paradigm was utilized as an animal model of depression to explore the potential role of GPR55 in depression. After CSDS, the protein level of GPR55 decreased significantly, but the mRNA expression did not change significantly, highlighting that although the GPR55 protein was involved in the progression of the depression- and anxiety-like phenotypes, its mRNA was not. Additionally, depression- and anxiety-like behaviors were also accompanied by neuroinflammation and impaired adult neurogenesis in the hippocampus. Interestingly, O-1602, a GPR55 agonist, remarkably prevented the development of depression- and anxiety-like behaviors as well as hippocampal neuroinflammation and neurogenesis deficits induced by CSDS. However, after electroacupuncture (EA) alleviated depression- and anxiety-like behaviors induced by CSDS, treatment with a GPR55 antagonist (CID16020046) reversed this effect. Our research demonstrated that downregulation of GPR55 expression in the hippocampus might mediate CSDS-induced depression- and anxiety-like phenotypes, and activation and upregulation of GPR55, which might be correlated with its anti-inflammatory and subsequent neuroprotective effects, could be a potential treatment for depression.


Asunto(s)
Fármacos Neuroprotectores , Derrota Social , Animales , Depresión/metabolismo , Hipocampo/metabolismo , Ratones , Ratones Endogámicos C57BL , Neurogénesis/fisiología , Enfermedades Neuroinflamatorias , Fármacos Neuroprotectores/farmacología , Receptores de Cannabinoides/metabolismo , Estrés Psicológico/complicaciones
4.
BMC Cancer ; 21(1): 1165, 2021 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-34717566

RESUMEN

BACKGROUND: Early recurrence is the major cause of poor prognosis in hepatocellular carcinoma (HCC). Long non-coding RNAs (lncRNAs) are deeply involved in HCC prognosis. In this study, we aimed to establish a prognostic lncRNA signature for HCC early recurrence. METHODS: The lncRNA expression profile and corresponding clinical data were retrieved from total 299 HCC patients in TCGA database. LncRNA candidates correlated to early recurrence were selected by differentially expressed gene (DEG), univariate Cox regression and least absolute shrinkage and selection operator (LASSO) regression analyses. A 25-lncRNA prognostic signature was constructed according to receiver operating characteristic curve (ROC). Kaplan-Meier and multivariate Cox regression analyses were used to evaluate the performance of this signature. ROC and nomogram were used to evaluate the integrated models based on this signature with other independent clinical risk factors. Gene set enrichment analysis (GSEA) was used to reveal enriched gene sets in the high-risk group. Tumor infiltrating lymphocytes (TILs) levels were analyzed with single sample Gene Set Enrichment Analysis (ssGSEA). Immune therapy response prediction was performed with TIDE and SubMap. Chemotherapeutic response prediction was conducted by using Genomics of Drug Sensitivity in Cancer (GDSC) pharmacogenomics database. RESULTS: Compared to low-risk group, patients in high-risk group showed reduced disease-free survival (DFS) in the training (p < 0.0001) and validation cohort (p = 0.0132). The 25-lncRNA signature, AFP, TNM and vascular invasion could serve as independent risk factors for HCC early recurrence. Among them, the 25-lncRNA signature had the best predictive performance, and combination of those four risk factors further improves the prognostic potential. Moreover, GSEA showed significant enrichment of "E2F TARGETS", "G2M CHECKPOINT", "MYC TARGETS V1" and "DNA REPAIR" pathways in the high-risk group. In addition, increased TILs were observed in the low-risk group compared to the high-risk group. The 25-lncRNA signature negatively associates with the levels of some types of antitumor immune cells. Immunotherapies and chemotherapies prediction revealed differential responses to PD-1 inhibitor and several chemotherapeutic drugs in the low- and high-risk group. CONCLUSIONS: Our study proposed a 25-lncRNA prognostic signature for predicting HCC early recurrence, which may guide postoperative treatment and recurrence surveillance in HCC patients.


Asunto(s)
Carcinoma Hepatocelular/genética , Perfilación de la Expresión Génica , Neoplasias Hepáticas/genética , Recurrencia Local de Neoplasia/genética , ARN Largo no Codificante/genética , Carcinoma Hepatocelular/mortalidad , Carcinoma Hepatocelular/patología , Carcinoma Hepatocelular/terapia , Reparación del ADN , Supervivencia sin Enfermedad , Puntos de Control de la Fase G2 del Ciclo Celular , Genes myc , Humanos , Inmunoterapia , Estimación de Kaplan-Meier , Neoplasias Hepáticas/mortalidad , Neoplasias Hepáticas/patología , Neoplasias Hepáticas/terapia , Linfocitos Infiltrantes de Tumor , Recurrencia Local de Neoplasia/mortalidad , Recurrencia Local de Neoplasia/patología , Recurrencia Local de Neoplasia/terapia , Pronóstico , Modelos de Riesgos Proporcionales , ARN Largo no Codificante/análisis , Curva ROC , Factores de Riesgo , alfa-Fetoproteínas/análisis
5.
Langmuir ; 37(15): 4578-4586, 2021 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-33829794

RESUMEN

Plasmonic Au nanoparticles (NPs) have been commonly used to enhance the photocatalytic activity of Cu2O. Till now, core-shell Au NP@Cu2O composites have been reported in previous studies. Yet, these Au@Cu2O composites only exhibit visible light response. Other special Au nanostructures, such as Au nanorods (NRs) or Au nanobipyramids (NBPs), which possess near-infrared light absorption, were rarely used to endow the near-infrared light response for Cu2O. In this work, for the first time, we used Au NPs, Au NRs, and Au NBPs and employed a handy and universal method to synthesize a series of yolk-shelled Au@Cu2O composites. The results showed that the yolk-shelled Au@Cu2O composites had much higher photocatalytic activity than their solid-shelled ones and pure Cu2O. More importantly, yolk-shelled Au NR@Cu2O and Au NBP@Cu2O composites indeed presented excellent near-infrared light-driven photocatalytic activity, which were impossible for Au NP@Cu2O and pure Cu2O. This outstanding performance for yolk-shelled Au NR@Cu2O and Au NBP@Cu2O could be attributed to the transfer of abundant hot electrons from Au NRs or Au NBPs to Cu2O, and the timely utilization of hot holes on Au through the rich pore channels on their yolk-shelled structure. Furthermore, yolk-shelled Au@Cu2O also showed better stability than pure Cu2O, owing to the migration of the oxidizing holes from Cu2O to Au driven by the built-in electric field. This work may give a guide to fabricate controllable and effective photocatalysts based on plasmonic metals and semiconductors with full solar light-driven photocatalytic activities in the future.

6.
J Integr Neurosci ; 18(2): 153-161, 2019 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-31321956

RESUMEN

We investigate whether ß-carotene, a known natural antioxidant, can reduce oxidative stress induced by traumatic brain injury. In addition, we investigated the underlying mechanism of traumatic brain injury focusing on the NF-E2-related factor (Nrf2) pathway. A controlled cortical impact model was used to mimic traumatic brain injury. Using this model, we evaluated brain edema, lesion volume, neurologic deficits, reactive oxygen species, and the expression of Nrf2-related protein markers. The results of our study demonstrated that cognitive performance and neural functions were improved with ß-carotene administration. In addition, ß-carotene reduced brain edema and reactive oxygen species levels after traumatic brain injury. Nrf2 nuclear accumulation was increased and was accompanied by decreased Keap1 expression. The expression of quinone oxidoreductase 1, a target gene of the Nrf2 signaling pathway was increased. However, lesion volume was not significantly reduced after ß-carotene treatment. Taken together, our data demonstrated that ß-carotene administration was neuroprotective and alleviated oxidative stress by modulating the Nrf2/Keap1- mediated antioxidant pathway in the traumatic brain injury model.


Asunto(s)
Lesiones Traumáticas del Encéfalo/metabolismo , Lesiones Traumáticas del Encéfalo/prevención & control , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo , Fármacos Neuroprotectores/administración & dosificación , beta Caroteno/administración & dosificación , Animales , Antioxidantes/administración & dosificación , Encéfalo/patología , Lesiones Traumáticas del Encéfalo/patología , Modelos Animales de Enfermedad , Proteína 1 Asociada A ECH Tipo Kelch/metabolismo , Masculino , Ratones Endogámicos C57BL , Estrés Oxidativo/efectos de los fármacos , Transducción de Señal
7.
J Neuroinflammation ; 15(1): 21, 2018 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-29343269

RESUMEN

BACKGROUND: Depression is a heterogeneous disorder, with the exact neuronal mechanisms causing the disease yet to be discovered. Recent work suggests it is accompanied by neuro-inflammation, characterized, in particular, by microglial activation. However, microglial activation and its involvement in neuro-inflammation and stress-related depressive disorders are far from understood. METHODS: We utilized multiple detection methods to detect the neuro-inflammation in the hippocampus of rats after exposure to chronic mild stress (CMS). Male Sprague Dawley (SD) rats were subjected to chronic mild stressors for 12 weeks. Microglial activation and hippocampal neuro-inflammation were detected by using a combinatory approach of in vivo [18F] DPA-714 positron emission computed tomography (PET) imaging, ionized calcium-binding adapter molecule 1 and translocator protein (TSPO) immunohistochemistry, and detection of NOD-like receptor protein 3 (NLRP3) inflammasome and some inflammatory mediators. Then, the rats were treated with minocycline during the last 4 weeks to observe its effect on hippocampal neuro-inflammation and depressive-like behavior induced by chronic mild stress. RESULTS: The results show that 12 weeks of chronic mild stress induced remarkable depressive- and anxiety-like behavior, simultaneously causing hippocampal microglial activation detected by PET, immunofluorescence staining, and western blotting. Likewise, activation of NLRP3 inflammasome and upregulation of inflammatory mediators, such as interleukin-1ß (IL-1ß), IL-6, and IL-18, were also observed in the hippocampus after exposure to chronic stress. Interestingly, the anti-inflammatory mediators, such as IL-4 and IL-10, were also increased in the hippocampus following chronic mild stress, which may hint that chronic stress activates different types of microglia, which produce pro-inflammatory cytokines or anti-inflammatory cytokines. Furthermore, chronic minocycline treatment alleviated the depressive-like behavior induced by chronic stress and significantly inhibited microglial activation. Similarly, the activation of NLRP3 inflammasome and the increase of inflammatory mediators were not exhibited or significantly less marked in the minocycline treatment group. CONCLUSION: These results together indicate that microglial activation mediates the chronic mild stress-induced depressive- and anxiety-like behavior and hippocampal neuro-inflammation.


Asunto(s)
Ansiedad/metabolismo , Depresión/metabolismo , Mediadores de Inflamación/metabolismo , Microglía/metabolismo , Estrés Psicológico/metabolismo , Animales , Ansiedad/psicología , Enfermedad Crónica , Depresión/psicología , Modelos Animales de Enfermedad , Hipocampo/metabolismo , Masculino , Distribución Aleatoria , Ratas , Ratas Sprague-Dawley , Estrés Psicológico/psicología
8.
J Neuroinflammation ; 14(1): 102, 2017 05 10.
Artículo en Inglés | MEDLINE | ID: mdl-28486969

RESUMEN

BACKGROUND: In recent years, proinflammatory cytokine interleukin-1ß (IL-1ß) was considered to play a critical role in the pathogenesis of depression. In addition, P2X7 receptor (P2X7R), a member of the purinergic receptor family, which is predominantly present on microglia, as well as on astrocytes and neurons in lesser amounts in the central nervous system, was suggested to be involved in the processing and releasing of IL-1ß. Here, we investigated the role of P2X7R in the pathogenesis of depression. METHODS: Male Sprague-Dawley rats were subjected to chronic unpredictable stressors (CUS) for 3 weeks. At the end of week 1, 2, and 3, extracellular ATP, caspase 1, IL-1ß, and components and activation of NLRP3 inflammasome (nucleotide-binding, leucine-rich repeat, pyrin domain containing 3) were evaluated as biomarker of neuroinflammation. In separate experiments, the rats were microinjected with P2X7R agonists ATP, BzATP, and saline into the hippocampus, respectively, or exposed to CUS combined with hippocampal microinjection with P2X7R antagonist, BBG and A438079, and saline, respectively, for 3 weeks, followed by exposed to forced swimming test and open-field test. Moreover, we also evaluated the depressive and anxiety-like behavior of P2X7-null mice in forced swimming test, open-field test, and elevated plus maze. RESULTS: Along with stress accumulation, extracellular ATP, cleaved-caspase 1, IL-1ß, and ASC were significantly enhanced in the hippocampus, but P2X7R and NLRP3 were not. Immunoprecipitation assay indicated that along with the accumulation of stress, assembly of NLRP3 inflammasome and cleaved caspase 1 in NLRP3 inflammasome were significantly increased. Moreover, antagonists of P2X7R, either BBG or A438079, prevented the development of depressive-like behaviors induced by chronic unpredictable stress in rats. Meanwhile, we could not observe any depressive-like or anxiety-like behaviors of P2X7-null mice after they had been exposed to CUS. The results implied that P2X7 knockout could impede the development of depressive-like and anxiety-like behaviors induced by CUS. In contrast, chronic administration of agonists of P2X7R, either ATP or BzATP, could induce depressive-like behaviors. CONCLUSIONS: The activation of P2X7R and subsequent NLRP3 inflammasome in hippocampal microglial cells could mediate depressive-like behaviors, which suggests a new therapeutic target for the prevention and treatment of depression.


Asunto(s)
Depresión/etiología , Depresión/patología , Hipocampo/patología , Proteínas del Tejido Nervioso/metabolismo , Neuroglía/metabolismo , Receptores Purinérgicos P2X7/metabolismo , Estrés Psicológico/complicaciones , Adenosina Trifosfato/metabolismo , Adenosina Trifosfato/farmacología , Animales , Modelos Animales de Enfermedad , Conducta Exploratoria/fisiología , Privación de Alimentos , Calor/efectos adversos , Masculino , Neuroglía/efectos de los fármacos , Antagonistas del Receptor Purinérgico P2X/farmacología , Piridinas/farmacología , Ratas , Ratas Sprague-Dawley , Ratas Transgénicas , Receptores Purinérgicos P2X7/genética , Estrés Psicológico/etiología , Natación/psicología , Tetrazoles/farmacología , Privación de Agua
9.
Neural Regen Res ; 19(9): 1890-1898, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-38227513

RESUMEN

Previous studies have demonstrated a bidirectional relationship between inflammation and depression. Activation of the nucleotide-binding oligomerization domain, leucine-rich repeat, and NLR family pyrin domain-containing 3 (NLRP3) inflammasomes is closely related to the pathogenesis of various neurological diseases. In patients with major depressive disorder, NLRP3 inflammasome levels are significantly elevated. Understanding the role that NLRP3 inflammasome-mediated neuroinflammation plays in the pathogenesis of depression may be beneficial for future therapeutic strategies. In this review, we aimed to elucidate the mechanisms that lead to the activation of the NLRP3 inflammasome in depression as well as to provide insight into therapeutic strategies that target the NLRP3 inflammasome. Moreover, we outlined various therapeutic strategies that target the NLRP3 inflammasome, including NLRP3 inflammatory pathway inhibitors, natural compounds, and other therapeutic compounds that have been shown to be effective in treating depression. Additionally, we summarized the application of NLRP3 inflammasome inhibitors in clinical trials related to depression. Currently, there is a scarcity of clinical trials dedicated to investigating the applications of NLRP3 inflammasome inhibitors in depression treatment. The modulation of NLRP3 inflammasomes in microglia holds promise for the management of depression. Further investigations are necessary to ascertain the efficacy and safety of these therapeutic approaches as potential novel antidepressant treatments.

10.
J Affect Disord ; 348: 333-344, 2024 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-38171418

RESUMEN

BACKGROUND: The endocannabinoid system plays a crucial role in regulating mood, but the specific involvement of cannabinoid receptor type 2 (CB2R) in depression remains poorly understood. Similarly, the mechanisms by which electroacupuncture (EA) provides therapeutic benefits for depression are not clearly defined. This research aims to explore the function of CB2R in depression and examine if the therapeutic effects of EA are associated with the hippocampal CB2R system. METHODS: Mice experiencing social defeat stress (SDS) were used to model depression and anxiety behaviors. We quantified hippocampal CB2R and N-arachidonoylethanolamide (AEA) levels. The efficacy of a CB2R agonist, JWH133, in mitigating SDS-induced behaviors was evaluated. Additionally, EA's impact on CB2R and AEA was assessed, along with the influence of CB2R antagonist AM630 on EA's antidepressant effects. RESULTS: SDS led to depressive and anxiety-like behaviors, with corresponding decreases in hippocampal CB2R and AEA. Treatment with JWH133 ameliorated these behaviors. EA treatment resulted in increased CB2R and AEA levels, while AM630 blocked these antidepressant effects. LIMITATIONS: The study mainly focused on the SDS model, which may not entirely reflect other depression models. Besides, further investigation is needed to understand the precise mechanisms by which CB2R and AEA contribute to EA's effects. CONCLUSIONS: The study suggests hippocampal downregulation of CB2R and AEA contributes to depression. Upregulation of CB2R and AEA in response to EA suggests their involvement in EA's antidepressant effects. These findings provide insights into the role of the hippocampal CB2R system in depression and the potential mechanisms underlying EA's therapeutic effects.


Asunto(s)
Cannabinoides , Depresión , Ratones , Animales , Receptores de Cannabinoides , Depresión/tratamiento farmacológico , Derrota Social , Cannabinoides/farmacología , Cannabinoides/uso terapéutico , Antidepresivos
11.
Nat Commun ; 15(1): 5199, 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38890305

RESUMEN

Extracellular ATP (eATP) signaling through the P2X7 receptor pathway is widely believed to trigger NLRP3 inflammasome assembly in microglia, potentially contributing to depression. However, the cellular stress responses of microglia to both eATP and stress itself remain largely unexplored. Mitochondria-associated membranes (MAMs) is a platform facilitating calcium transport between the endoplasmic reticulum (ER) and mitochondria, regulating ER stress responses and mitochondrial homeostasis. This study aims to investigate how MAMs influence microglial reaction and their involvement in the development of depression-like symptoms in response to chronic social defeat stress (CSDS). CSDS induced ER stress, MAMs' modifications, mitochondrial damage, and the formation of the IP3R3-GRP75-VDAC1 complex at the ER-mitochondria interface in hippocampal microglia, all concomitant with depression-like behaviors. Additionally, exposing microglia to eATP to mimic CSDS conditions resulted in analogous outcomes. Furthermore, knocking down GRP75 in BV2 cells impeded ER-mitochondria contact, calcium transfer, ER stress, mitochondrial damage, mitochondrial superoxide production, and NLRP3 inflammasome aggregation induced by eATP. In addition, reduced GRP75 expression in microglia of Cx3cr1CreER/+Hspa9f/+ mice lead to reduce depressive behaviors, decreased NLRP3 inflammasome aggregation, and fewer ER-mitochondria contacts in hippocampal microglia during CSDS. Here, we show the role of MAMs, particularly the formation of a tripartite complex involving IP3R3, GRP75, and VDAC1 within MAMs, in facilitating communication between the ER and mitochondria in microglia, thereby contributing to the development of depression-like phenotypes in male mice.


Asunto(s)
Depresión , Estrés del Retículo Endoplásmico , Retículo Endoplásmico , Ratones Endogámicos C57BL , Microglía , Mitocondrias , Proteína con Dominio Pirina 3 de la Familia NLR , Derrota Social , Estrés Psicológico , Canal Aniónico 1 Dependiente del Voltaje , Animales , Mitocondrias/metabolismo , Depresión/metabolismo , Microglía/metabolismo , Microglía/patología , Ratones , Masculino , Retículo Endoplásmico/metabolismo , Estrés Psicológico/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/genética , Canal Aniónico 1 Dependiente del Voltaje/metabolismo , Canal Aniónico 1 Dependiente del Voltaje/genética , Hipocampo/metabolismo , Hipocampo/patología , Adenosina Trifosfato/metabolismo , Inflamasomas/metabolismo , Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Receptores de Inositol 1,4,5-Trifosfato/genética , Calcio/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas de la Membrana/genética , Conducta Animal , Membranas Asociadas a Mitocondrias , Proteínas HSP70 de Choque Térmico
12.
BMC Complement Altern Med ; 13: 288, 2013 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-24165147

RESUMEN

BACKGROUND: In this study, we investigate the proliferation of adult neural stem cells (NSCs) in a chronic unpredictable stress (CUS) rat model of depression, the effects of electroacupunture (EA) on depressive-like symptoms and the corresponding signaling pathways. METHODS: SD rats were subjected to 4 weeks of CUS to induce depressive-like behaviors. EA was performed at the Du-20 (Bai-Hui) and GB-34 (Yang-Ling-Quan) acupoints. Rats were injected with BrdU and the brains were cut into sections. Double-labeling with BrdU/Sox2 and p-ERK/Nestin was performed to demonstrate the in vivo proliferation of adult NSCs in hippocampus and ERK activation in NSCs. Hippocampal microdialysates of different groups were collected to observe the in vitro effects on NSCs. RESULTS: After 8 treatments, EA generated a clear antidepressant effect on the stressed rats and promoted the NSC proliferation. ERK activation might be involved in the antidepressant-like effects of EA treatment. Hippocampal microdialysates from EA-treated stressed rats influenced NSCs to form larger neural spheres and exhibit higher p-ERK level in vitro, compared to the untreated stressed rats. Meanwhile, the antidepressant-like effects of EA involved contribution from both acupoint specificity and electrical stimulus. CONCLUSIONS: EA might interfere with the hippocampal microenvironment and enhance the activation of ERK signaling pathways. This could mediate, at least in part, the beneficial effects of EA on NSC proliferation and depressive-like behaviors.


Asunto(s)
Depresión/terapia , Electroacupuntura , Hipocampo/metabolismo , Sistema de Señalización de MAP Quinasas , Células-Madre Neurales/citología , Puntos de Acupuntura , Animales , Proliferación Celular , Depresión/metabolismo , Depresión/fisiopatología , Humanos , Masculino , Células-Madre Neurales/metabolismo , Ratas , Ratas Sprague-Dawley , Transducción de Señal , Regulación hacia Arriba
13.
Neurosci Bull ; 39(5): 832-844, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36757612

RESUMEN

Parkinson's disease (PD) is a common neurodegenerative disorder caused by the loss of dopamine neurons in the substantia nigra and the formation of Lewy bodies, which are mainly composed of alpha-synuclein fibrils. Alpha-synuclein plays a vital role in the neuroinflammation mediated by the nucleotide-binding oligomerization domain-, leucine-rich repeat-, and pyrin domain-containing protein 3 (NLRP3) inflammasome in PD. A better understanding of the NLRP3 inflammasome-mediated neuroinflammation and the related mitochondrial impairment during PD progression may facilitate the development of promising therapies for PD. This review focuses on the molecular mechanisms underlying NLRP3 inflammasome activation, comprising priming and protein complex assembly, as well as the role of mitochondrial impairment and its subsequent inflammatory effects on the progression of neurodegeneration in PD. In addition, the therapeutic strategies targeting the NLRP3 inflammasome for PD treatment are discussed, including the inhibitors of NLRP3 inflammatory pathways, mitochondria-focused treatments, microRNAs, and other therapeutic compounds.


Asunto(s)
Enfermedad de Parkinson , Humanos , Enfermedad de Parkinson/complicaciones , alfa-Sinucleína , Inflamasomas , Proteína con Dominio Pirina 3 de la Familia NLR , Enfermedades Neuroinflamatorias , Mitocondrias
14.
Neuropharmacology ; 220: 109249, 2022 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-36115588

RESUMEN

BACKGROUND: As antidepressants commonly used in the clinic have proved to be problematic, it is urgent to gain an updated understanding of the pathogenesis of depression and find potential therapeutic targets. Since both functional brain imaging studies and autopsy reports indicated that there is indeed a loss of synapses in depressed patients, it is necessary to explore the mechanism of this process. METHODS: We firstly investigated the effect of chronic social defeat stress (CSDS), a mouse model of depression, on behaviors, synapses, microglia, and microglial phagocytosis of synapses in mice. Then, as it is unclear whether microglial phagocytosis leads to synaptic loss, or synaptic loss induces the microglial clearance in CSDS mice, we used minocycline, a microglial activation inhibitor, to inhibit the microglial phagocytosis of synapses and study its effect on synapses and behaviors in CSDS mice. RESULTS: Our results showed that the expression levels of PSD-95 in the hippocampal dentate gyrus (DG) of CSDS mice were significantly reduced, while the microglia were significantly activated and the Iba1+CD68+ cell (phagocytic microglia) density was increased. We co-labeled the synaptic protein PSD-95 with the microglia marker Iba1 and found that the microglia in the hippocampal DG of CSDS mice contained significantly more PSD-95 engulfed puncta, which revealed that microglia in CSDS mice abnormally phagocytized synapses. Moreover, our results indicated that minocycline treatment dampened microglial activation, decreased the phagocytic microglia density, reduced abnormal microglial phagocytosis of synapses, reversed synaptic loss, and alleviated behavioral impairment in CSDS mice. CONCLUSIONS: Under depressive pathological conditions, the activated microglia may abnormally engulf neuronal synapses causing synaptic loss and behavioral impairments. Thus, microglial phagocytosis may be a novel therapeutic target for the treatment of depression.


Asunto(s)
Microglía , Minociclina , Animales , Antidepresivos/metabolismo , Antidepresivos/farmacología , Antidepresivos/uso terapéutico , Depresión/tratamiento farmacológico , Depresión/metabolismo , Modelos Animales de Enfermedad , Homólogo 4 de la Proteína Discs Large/metabolismo , Ratones , Ratones Endogámicos C57BL , Minociclina/farmacología , Fagocitosis , Sinapsis/metabolismo
15.
Front Pharmacol ; 12: 714586, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34764866

RESUMEN

Sennoside A (SA) is a natural dianthrone glycoside mainly from medicinal plants of Senna and Rhubarb, and used as a folk traditional irritant laxative and slimming health food. Accumulating evidences suggest that SA possesses numerous pharmacological properties, such as laxative, anti-obesity, hypoglycemic, hepatoprotective, anti-fibrotic, anti-inflammatory, anti-tumor, anti-bacterial, anti-fungal, anti-viral, and anti-neurodegenerative activities. These pharmacological effects lay the foundation for its potential application in treating a variety of diseases. However, numerous published studies suggest that a long-term use of SA in large doses may have some adverse effects, including the occurrence of melanosis coli and carcinogenesis of colon cancer, thereby limiting its clinical use. It remains to be established whether SA or its metabolites are responsible for the pharmacological and toxicity effects. In this review, the latest advances in the pharmacology, toxicology, and metabolism of SA were summarizedbased on its biological characteristics and mechanism.

16.
Front Endocrinol (Lausanne) ; 12: 720784, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34659115

RESUMEN

Metformin (MET), the most common medicine for type 2 diabetes (T2DM), improves insulin sensitivity by targeting the liver, intestine and other organs. Its impact on expression of the solute carrier (Slc) transporter genes have not been reported in the mechanism of insulin sensitization. In this study, we examined Slc gene expression in the liver and colon of diet-induced obese (DIO) mice treated with MET by transcriptomic analysis. There were 939 differentially expressed genes (DEGs) in the liver of DIO mice vs lean mice, which included 34 Slc genes. MET altered 489 DEGs in the liver of DIO mice, in which 23 were Slc genes. Expression of 20 MET-responsive Slc DEGs was confirmed by qRT-PCR, in which 15 Slc genes were altered in DIO mice and their expressions were restored by MET, including Slc2a10, Slc2a13, Slc5a9, Slc6a14, Slc7a9, Slc9a2, Slc9a3, Slc13a2, Slc15a2, Slc26a3, Slc34a2, Slc37a1, Slc44a4, Slc51b and Slc52a3. While, there were only 97 DEGs in the colon of DIO mice with 5 Slc genes, whose expression was not restored by MET. The data suggest that more genes were altered in the liver over the colon by the high fat diet (HFD). There were 20 Slc genes with alteration confirmed in the liver of DIO mice and 15 of them were restored by MET, which was associated with improvement of insulin sensitivity and obesity. The restoration may improve the uptake of glucose, amino acids, mannose, fructose, 1,5-anhydro-D-glucitol and bumetanide in hepatocytes of the liver of DIO mice. The study provides new insight into the mechanism of metformin action in insulin sensitization and obesity.


Asunto(s)
Hígado/efectos de los fármacos , Metformina/farmacología , Obesidad , Proteínas Transportadoras de Solutos/genética , Animales , Dieta Alta en Grasa , Regulación de la Expresión Génica/efectos de los fármacos , Glucosa/metabolismo , Prueba de Tolerancia a la Glucosa , Hepatocitos/efectos de los fármacos , Hepatocitos/metabolismo , Hepatocitos/patología , Resistencia a la Insulina/genética , Hígado/metabolismo , Hígado/patología , Masculino , Metformina/uso terapéutico , Ratones , Ratones Endogámicos C57BL , Ratones Obesos , Obesidad/tratamiento farmacológico , Obesidad/genética , Obesidad/metabolismo , Obesidad/patología , ARN Mensajero/metabolismo , Proteínas Transportadoras de Solutos/efectos de los fármacos , Proteínas Transportadoras de Solutos/metabolismo
17.
J Cancer ; 12(23): 7003-7009, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34729102

RESUMEN

In addition to cancer-related death, malignant progression also leads to a series of symptoms and side-effects, which would detrimentally affect cancer patients' the quality of life, adversely influence their adherence to treatments, and, therefore, negatively affect their long-term survival. Acupuncture and electroacupuncture (EA), as two classic treatment methods in traditional Chinese medicine, have been widely employed to cure various diseases. Recently, the clinical application of acupuncture and EA in cancer patients has received great attention. In this review, we summarized the clinical application of acupuncture and EA in alleviating the cancer symptoms, reducing the cancer treatment-related side-effects, and relieving the cancer pain. The symptoms and side-effects discussed in this review include fatigue, insomnia, chemotherapy-associated dyspepsia syndrome (CADS), pain, xerostomia, and anxiety and depression. The underlying mechanisms of the therapeutic effects of acupuncture and EA might be related to the regulation of the mitochondrial function, coordination of the activity of the nervous system, adjustment of the production of neurotransmitters, and alleviation of the immune responses. In conclusion, acupuncture and EA have been proved to be beneficial for cancer patients. More research, however, is required to clarify the potential mechanisms behind acupuncture and EA for widespread adoption in clinical application.

18.
Front Oncol ; 11: 653717, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33959506

RESUMEN

Hepatocellular carcinoma (HCC) is one of the leading causes of cancer-related death worldwide. Due to the lack of potent diagnosis and prognosis biomarkers and effective therapeutic targets, the overall prognosis of survival is poor in HCC patients. Circular RNAs (circRNAs) are a class of novel endogenous non-coding RNAs with covalently closed loop structures and implicated in diverse physiological processes and pathological diseases. Recent studies have demonstrated the involvement of circRNAs in HCC diagnosis, prognosis, development, and drug resistance, suggesting that circRNAs may be a class of novel targets for improving HCC diagnosis, prognosis, and treatments. In fact, some artificial circRNAs have been engineered and showed their therapeutic potential in treating HCV infection and gastric cancer. In this review, we introduce the potential of circRNAs as biomarkers for HCC diagnosis and prognosis, as therapeutic targets for HCC treatments and discuss the challenges in circRNA research and chances of circRNA application.

19.
Acupunct Med ; 39(5): 501-511, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-33557583

RESUMEN

OBJECTIVE: Parkinson's disease (PD) is a chronic neurodegenerative disease involving non-motor symptoms, of which gastrointestinal disorders are the most common. In light of recent results, intestinal dysfunction may be involved in the pathogenesis of PD. Electroacupuncture (EA) has shown potential effects, although the underlying mechanism remains mostly unknown. We speculated that EA could relieve the behavioral defects of PD, and that this effect would be associated with modulation of the gut microbiota. METHODS: Mice were randomly divided into three groups: control, PD + MA (manual acupuncture), and PD + EA. MPTP (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine) was used to establish the mouse model of PD. Rotarod performance tests, open field tests, and pole tests were carried out to assess motor deficiencies. Immunohistochemistry was conducted to examine the survival of dopaminergic neurons. 16S ribosomal RNA (rRNA) gene sequencing was applied to investigate the alterations of the gut microbiome. Quantitative real-time polymerase chain reaction (PCR) was performed to characterize the messenger RNA (mRNA) levels of pro-inflammatory and anti-inflammatory cytokines. RESULTS: We found that EA was able to alleviate the behavioral defects in the rotarod performance test and pole test, and partially rescue the significant loss of dopaminergic neurons in the substantia nigra (SN) chemically induced by MPTP in mice. Moreover, the PD + MA mice showed a tendency toward decreased intestinal microbial alpha diversity, while EA significantly reversed it. The abundance of Erysipelotrichaceae was significantly increased in PD + MA mice, and the alteration was also reversed by EA. In addition, the pro-inflammatory cytokines interleukin (IL)-6 and tumor necrosis factor (TNF)-α were substantially increased in the SN of PD + MA mice, an effect that was reversed by EA. CONCLUSION: These results suggest that EA may alleviate behavioral defects via modulation of gut microbiota and suppression of inflammation in the SN of mice with PD, which provides new insights into the pathogenesis of PD and its treatment.


Asunto(s)
Electroacupuntura , Microbioma Gastrointestinal , Enfermedad de Parkinson/microbiología , Enfermedad de Parkinson/terapia , Animales , Bacterias/clasificación , Bacterias/genética , Bacterias/aislamiento & purificación , Conducta Animal , Citocinas/genética , Citocinas/metabolismo , Modelos Animales de Enfermedad , Neuronas Dopaminérgicas/metabolismo , Humanos , Interleucina-6/genética , Interleucina-6/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Enfermedad de Parkinson/metabolismo , Enfermedad de Parkinson/psicología , Factor de Necrosis Tumoral alfa/genética , Factor de Necrosis Tumoral alfa/metabolismo
20.
Front Pharmacol ; 11: 566099, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33708105

RESUMEN

Sennoside A (SA) is a bioactive component of Rheum officinale Baill. with an activity of irritant laxative, which has been reported to possess therapeutic potential in various diseases or conditions including obesity, insulin resistance, liver steatosis, prostate cancer and pancreatic cancer progression. However, whether SA has therapeutic potential in hepatocellular carcinoma (HCC) treatment remains elusive. In this study, we treated two HCC cell lines, HepG2 and SMMC-7721 with SA and found that SA selectively inhibited the growth of HCC cells by proliferation assay. SA has a good inhibitory effect on proliferation of HepG2 cells in a concentration dependent manner, but there was no effect on SMMC-7721 cells. Then we conducted transwell assays and transcriptome analysis in HCC cells and examined the effects of SA on HCC in vivo. The results showed that SA significantly inhibited the migration and invasion of HCC. Comparison of RNA-seq transcriptome profiles from control groups and SA-treated groups identified 171 and 264 differentially expressed genes (DEGs) in HepG2 and SMMC-7721 cells respectively, in which includes 2 overlapping up-regulated DEGs and 12 overlapping down-regulated DEGs between HepG2 and SMMC-7721 cells. The qPCR were applied to investigate the transcriptional level of 9 overlapping down-regulated DEGs related to cancer metastasis, and the results were consistent with RNA-seq data. The dominate pathways including Wnt signaling pathway, TNF signaling pathway, VEGF signaling pathway, and NF-κB signaling pathway were strongly inhibited by SA, which are involved in regulating cancer metastasis. Finally, we confirmed that the downregulation of KRT7 and KRT81 could inhibit HCC metastasis. This study has provided new insight into the understanding of the inhibitory effects and potential targets of SA on the metastasis of HCC.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA