Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Int J Mol Sci ; 25(15)2024 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-39125716

RESUMEN

In patients with endometriosis, refluxed endometrial fragments evade host immunosurveillance, developing into endometriotic lesions. However, the mechanisms underlying this evasion have not been fully elucidated. N-Myc and STAT Interactor (NMI) have been identified as key players in host immunosurveillance, including interferon (IFN)-induced cell death signaling pathways. NMI levels are markedly reduced in the stromal cells of human endometriotic lesions due to modulation by the Estrogen Receptor beta/Histone Deacetylase 8 axis. Knocking down NMI in immortalized human endometrial stromal cells (IHESCs) led to elevated RNA levels of genes involved in cell-to-cell adhesion and extracellular matrix signaling following IFNA treatment. Furthermore, NMI knockdown inhibited IFN-regulated canonical signaling pathways, such as apoptosis mediated by Interferon Stimulated Gene Factor 3 and necroptosis upon IFNA treatment. In contrast, NMI knockdown with IFNA treatment activated non-canonical IFN-regulated signaling pathways that promote proliferation, including ß-Catenin and AKT signaling. Moreover, NMI knockdown in IHESCs stimulated ectopic lesions' growth in mouse endometriosis models. Therefore, NMI is a novel endometriosis suppressor, enhancing apoptosis and inhibiting proliferation and cell adhesion of endometrial cells upon IFN exposure.


Asunto(s)
Apoptosis , Endometriosis , Transducción de Señal , Femenino , Humanos , Endometriosis/metabolismo , Endometriosis/patología , Endometriosis/genética , Animales , Ratones , Apoptosis/genética , Endometrio/metabolismo , Endometrio/patología , Proliferación Celular , Células del Estroma/metabolismo , Adhesión Celular/genética , Interferones/metabolismo , Péptidos y Proteínas de Señalización Intracelular
2.
bioRxiv ; 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38766020

RESUMEN

In patients with endometriosis, refluxed endometrial fragments evade host immunosurveillance, developing into endometriotic lesions. However, the mechanisms underlying this evasion have not been fully elucidated. N-Myc and STAT Interactor (NMI) have been identified as key players in host immunosurveillance, including interferon (IFN)-induced cell death signaling pathways. NMI levels are markedly reduced in the stromal cells of human endometriotic lesions due to modulation by the Estrogen Receptor beta/Histone Deacetylase 8 axis. Knocking down NMI in immortalized human endometrial stromal cells (IHESCs) led to elevated RNA levels of genes involved in cell-to-cell adhesion and extracellular matrix signaling following IFNA treatment. Furthermore, NMI knockdown inhibited IFN-regulated canonical signaling pathways, such as apoptosis mediated by Interferon Stimulated Gene Factor 3, and necroptosis upon IFNA treatment. In contrast, NMI knockdown with IFNA treatment activated non-canonical IFN-regulated signaling pathways that promote proliferation, including ß-Catenin and AKT signaling. Moreover, NMI knockdown in IHESCs stimulated ectopic lesions' growth in mouse endometriosis models. Therefore, NMI is a novel endometriosis suppressor, enhancing apoptosis and inhibiting proliferation and cell adhesion of endometrial cells upon IFN exposure.

3.
Front Immunol ; 15: 1389041, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38698860

RESUMEN

Steroid receptor coactivators (SRCs) are master regulators of transcription that play key roles in human physiology and pathology. SRCs are particularly important for the regulation of the immune system with major roles in lymphocyte fate determination and function, macrophage activity, regulation of nuclear factor κB (NF-κB) transcriptional activity and other immune system biology. The three members of the p160 SRC family comprise a network of immune-regulatory proteins that can function independently or act in synergy with each other, and compensate for - or moderate - the activity of other SRCs. Recent evidence indicates that the SRCs are key participants in governing numerous aspects of CD4+ T cell biology. Here we review findings that establish the SRCs as essential regulators of regulatory T cells (Tregs) and T helper 17 (Th17) cells, with a focus on their crucial roles in Treg immunity in cancer and Treg-Th17 cell phenotypic plasticity.


Asunto(s)
Linfocitos T Reguladores , Células Th17 , Humanos , Neoplasias/inmunología , Neoplasias/metabolismo , Coactivadores de Receptor Nuclear/metabolismo , Linfocitos T Reguladores/inmunología , Células Th17/inmunología , Células Th17/metabolismo
4.
Int J Antimicrob Agents ; 63(3): 107082, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38163552

RESUMEN

Global spread of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) Omicron subvariants, such as BA.4, BA.5 and XBB.1.5, has been leading the recent wave of coronavirus disease 2019 (COVID-19). Unique mutations in the spike proteins of these emerging Omicron subvariants caused immune evasion from the pre-existing protective immunity induced by vaccination or natural infection. Previously, we developed AdCLD-CoV19-1, a non-replicating recombinant adenoviral vector that encodes the receptor binding domain of the spike protein of the ancestral SARS-CoV-2 strain. Based on the same recombinant adenoviral vector platform, updated vaccines that cover unique mutations found in each Omicron subvariant, including BA.1, BA.2, BA.4.1 and BA.5, were constructed. Preclinical studies revealed that each updated vaccine as a booster shot following primary vaccination targeting the ancestral strain improved neutralizing antibody responses against the pseudovirus of its respective strain most effectively. Of note, boosting with a vaccine targeting the BA.1 or BA.2 Omicron subvariant was most effective in neutralization against the pseudovirus of the BA.2.75 strain, whereas BA.4.1/5-adapted booster shots were most effective in neutralization against the BQ.1, BQ1.1 and BF.7 strains. Therefore, it is imperative to develop a vaccination strategy that can cover the unique spike mutations of currently circulating Omicron subvariants in order to prevent the next wave of COVID-19.


Asunto(s)
COVID-19 , SARS-CoV-2 , Animales , Ratones , SARS-CoV-2/genética , COVID-19/prevención & control , Anticuerpos Neutralizantes , Vectores Genéticos , Adenoviridae/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA