Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
J Virol ; : e0078824, 2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-38975769

RESUMEN

The cellular Notch signal transduction pathway is intimately associated with infections by Kaposi's sarcoma-associated herpesvirus (KSHV) and other gamma-herpesviruses. RBP-Jk, the cellular DNA binding component of the canonical Notch pathway, is the key Notch downstream effector protein in virus-infected and uninfected animal cells. Reactivation of KSHV from latency requires the viral lytic switch protein, Rta, to form complexes with RBP-Jk on numerous sites within the viral DNA. Constitutive Notch activity is essential for KSHV pathophysiology in models of Kaposi's sarcoma (KS) and Primary Effusion Lymphoma (PEL), and we demonstrate that Notch1 is also constitutively active in infected Vero cells. Although the KSHV genome contains >100 RBP-Jk DNA motifs, we show that none of the four isoforms of activated Notch can productively reactivate the virus from latency in a highly quantitative trans-complementing reporter virus system. Nevertheless, Notch contributed positively to reactivation because broad inhibition of Notch1-4 with gamma-secretase inhibitor (GSI) or expression of dominant negative mastermind-like1 (dnMAML1) coactivators severely reduced production of infectious KSHV from Vero cells. Reduction of KSHV production is associated with gene-specific reduction of viral transcription in both Vero and PEL cells. Specific inhibition of Notch1 by siRNA partially reduces the production of infectious KSHV, and NICD1 forms promoter-specific complexes with viral DNA during reactivation. We conclude that constitutive Notch activity is required for the robust production of infectious KSHV, and our results implicate activated Notch1 as a pro-viral member of a MAML1/RBP-Jk/DNA complex during viral reactivation. IMPORTANCE: Kaposi's sarcoma-associated herpesvirus (KSHV) manipulates the host cell oncogenic Notch signaling pathway for viral reactivation from latency and cell pathogenesis. KSHV reactivation requires that the viral protein Rta functionally interacts with RBP-Jk, the DNA-binding component of the Notch pathway, and with promoter DNA to drive transcription of productive cycle genes. We show that the Notch pathway is constitutively active during KSHV reactivation and is essential for robust production of infectious virus progeny. Inhibiting Notch during reactivation reduces the expression of specific viral genes yet does not affect the growth of the host cells. Although Notch cannot reactivate KSHV alone, the requisite expression of Rta reveals a previously unappreciated role for Notch in reactivation. We propose that activated Notch cooperates with Rta in a promoter-specific manner that is partially programmed by Rta's ability to redistribute RBP-Jk DNA binding to the virus during reactivation.

3.
Nature ; 549(7670): 48-53, 2017 09 07.
Artículo en Inglés | MEDLINE | ID: mdl-28854168

RESUMEN

Commensal bacteria are believed to have important roles in human health. The mechanisms by which they affect mammalian physiology remain poorly understood, but bacterial metabolites are likely to be key components of host interactions. Here we use bioinformatics and synthetic biology to mine the human microbiota for N-acyl amides that interact with G-protein-coupled receptors (GPCRs). We found that N-acyl amide synthase genes are enriched in gastrointestinal bacteria and the lipids that they encode interact with GPCRs that regulate gastrointestinal tract physiology. Mouse and cell-based models demonstrate that commensal GPR119 agonists regulate metabolic hormones and glucose homeostasis as efficiently as human ligands, although future studies are needed to define their potential physiological role in humans. Our results suggest that chemical mimicry of eukaryotic signalling molecules may be common among commensal bacteria and that manipulation of microbiota genes encoding metabolites that elicit host cellular responses represents a possible small-molecule therapeutic modality (microbiome-biosynthetic gene therapy).


Asunto(s)
Amidas/metabolismo , Bacterias/metabolismo , Mimetismo Biológico , Tracto Gastrointestinal/microbiología , Receptores Acoplados a Proteínas G/metabolismo , Transducción de Señal , Simbiosis , Amidas/química , Animales , Bacterias/enzimología , Bacterias/genética , Glucemia/metabolismo , Femenino , Microbioma Gastrointestinal/genética , Microbioma Gastrointestinal/fisiología , Tracto Gastrointestinal/metabolismo , Células HEK293 , Homeostasis , Humanos , Ligandos , Masculino , Ratones
4.
J Cell Biochem ; 116(4): 648-60, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25399916

RESUMEN

Dynamin-related protein-1 (Drp1) plays a critical role in mitochondrial fission which allows cell proliferation and Mdivi-1, a specific small molecule Drp1 inhibitor, is revealed to attenuate proliferation. However, few molecular mechanisms-related to Drp1 under stimulus for restenosis or atherosclerosis have been investigated in vascular smooth muscle cells (vSMCs). Therefore, we hypothesized that Drp1 inhibition can prevent vascular restenosis and investigated its regulatory mechanism. Angiotensin II (Ang II) or hydrogen peroxide (H2 O2 )-induced proliferation and migration in SMCs were attenuated by down-regulation of Drp1 Ser 616 phosphorylation, which was demonstrated by in vitro assays for migration and proliferation. Excessive amounts of ROS production and changes in mitochondrial membrane potential were prevented by Drp1 inhibition under Ang II and H2 O2 . Under the Ang II stimulation, activated Drp1 interacted with PKCδ and then activated MEK1/2-ERK1/2 signaling cascade and MMP2, but not MMP9. Furthermore, in ex vivo aortic ring assay, inhibition of the Drp1 had significant anti-proliferative and -migration effects for vSMCs. A formation of vascular neointima in response to a rat carotid artery balloon injury was prevented by Drp1 inhibition, which shows a beneficial effect of Drp1 regulation in the pathologic vascular condition. Drp1-mediated SMC proliferation and migration can be prevented by mitochondrial division inhibitor (Mdivi-1) in in vitro, ex vivo and in vivo, and these results suggest the possibility that Drp1 can be a new therapeutic target for restenosis or atherosclerosis.


Asunto(s)
Reestenosis Coronaria/metabolismo , Dinaminas/metabolismo , Mitocondrias/metabolismo , Músculo Liso Vascular/citología , Miocitos del Músculo Liso/metabolismo , Proteína Quinasa C-delta/metabolismo , Angiotensina II/farmacología , Animales , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Células Cultivadas , Peróxido de Hidrógeno/farmacología , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Masculino , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Neointima/metabolismo , Fosforilación , Ratas
5.
Biochem Biophys Res Commun ; 465(3): 349-55, 2015 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-26253469

RESUMEN

Under distinct pathological heart conditions, the expression of a single miRNA can display completely opposite patterns. However, the mechanism underlying the bidirectional regulation of a single miRNA and the clinical implications of this regulation remain largely unknown. To address this issue, we examined the regulation of miR-1, one of the most abundant miRNAs in the heart, during cardiac hypertrophy and ischemia/reperfusion (I/R). Our data indicated that different magnitudes and chronicities of ROS levels in cardiomyocytes resulted in differential expression of miR-1, subsequently altering the expression of myocardin. In animal models, the administration of a miR-1 mimic attenuated cardiac hypertrophy by suppressing the transverse aortic constriction-induced increase in myocardin expression, whereas the administration of anti-miR-1 ameliorated I/R-induced cardiac apoptosis and deterioration of heart function. Our findings indicated that a pathologic stimulus such as ROS can bidirectionally alter the expression of miRNA to contribute to the development of pathological conditions exhibiting distinct phenotypes and that the meticulous adjustment of the pathological miRNA levels is required to improve clinical outcomes.


Asunto(s)
Cardiomegalia/metabolismo , Insuficiencia Cardíaca/metabolismo , MicroARNs/metabolismo , Miocardio/metabolismo , Proteínas Nucleares/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Transactivadores/metabolismo , Animales , Apoptosis , Cardiomegalia/genética , Células Cultivadas , Regulación de la Expresión Génica/genética , Insuficiencia Cardíaca/genética , MicroARNs/genética , Proteínas Nucleares/genética , Ratas , Ratas Sprague-Dawley , Transactivadores/genética
6.
Nat Commun ; 13(1): 3101, 2022 06 03.
Artículo en Inglés | MEDLINE | ID: mdl-35661736

RESUMEN

The mechanisms by which commensal organisms affect human physiology remain poorly understood. Lectins are non-enzymatic carbohydrate binding proteins that all organisms employ as part of establishing a niche, evading host-defenses and protecting against pathogens. Although lectins have been extensively studied in plants, bacterial pathogens and human immune cells for their role in disease pathophysiology and as therapeutics, the role of bacterial lectins in the human microbiome is largely unexplored. Here we report on the characterization of a lectin produced by a common human associated bacterium that interacts with myeloid cells in the blood and intestine. In mouse and cell-based models, we demonstrate that this lectin induces distinct immunologic responses in peripheral and intestinal leukocytes and that these responses are specific to monocytes, macrophages and dendritic cells. Our analysis of human microbiota sequencing data reveal thousands of unique sequences that are predicted to encode lectins, many of which are highly prevalent in the human microbiome yet completely uncharacterized. Based on the varied domain architectures of these lectins we predict they will have diverse effects on the human host. The systematic investigation of lectins in the human microbiome should improve our understanding of human health and provide new therapeutic opportunities.


Asunto(s)
Lectinas , Microbiota , Animales , Bacterias/metabolismo , Humanos , Lectinas/metabolismo , Ratones , Plantas/metabolismo
7.
Cell Host Microbe ; 26(2): 273-282.e7, 2019 08 14.
Artículo en Inglés | MEDLINE | ID: mdl-31378678

RESUMEN

Despite evidence linking the human microbiome to health and disease, how the microbiota affects human physiology remains largely unknown. Microbiota-encoded metabolites are expected to play an integral role in human health. Therefore, assigning function to these metabolites is critical to understanding these complex interactions and developing microbiota-inspired therapies. Here, we use large-scale functional screening of molecules produced by individual members of a simplified human microbiota to identify bacterial metabolites that agonize G-protein-coupled receptors (GPCRs). Multiple metabolites, including phenylpropanoic acid, cadaverine, 9-10-methylenehexadecanoic acid, and 12-methyltetradecanoic acid, were found to interact with GPCRs associated with diverse functions within the nervous and immune systems, among others. Collectively, these metabolite-receptor pairs indicate that diverse aspects of human health are potentially modulated by structurally simple metabolites arising from primary bacterial metabolism.


Asunto(s)
Bacterias/metabolismo , Interacciones Microbiota-Huesped/inmunología , Interacciones Microbiota-Huesped/fisiología , Microbiota/inmunología , Microbiota/fisiología , Receptores Acoplados a Proteínas G/agonistas , Proteínas Angiogénicas/agonistas , Animales , Cadaverina/metabolismo , Cadaverina/farmacología , Ácidos Grasos/metabolismo , Ácidos Grasos/farmacología , Fermentación , Vida Libre de Gérmenes , Agonistas de los Receptores Histamínicos , Humanos , Sistema Inmunológico , Ligandos , Ratones , Ratones Endogámicos C57BL , Modelos Animales , Propionatos/metabolismo , Propionatos/farmacología , Receptores Acoplados a Proteínas G/metabolismo , Receptores Histamínicos/efectos de los fármacos , Receptores de Neurotransmisores/agonistas
8.
J Vet Sci ; 14(4): 381-6, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23820247

RESUMEN

E-cadherin is a cell adhesion molecule that plays an important role in maintaining renal epithelial polarity and integrity. The purpose of this study was to determine the exact cellular localization of E-cadherin in pig kidney. Kidney tissues from pigs were processed for light and electron microscopy immunocytochemistry, and immunoblot analysis. E-cadhedrin bands of the same size were detected by immunoblot of samples from rat and pig kidneys. In pig kidney, strong E-cadherin expression was observed in the basolateral plasma membrane of the tubular epithelial cells. E-cadherin immunolabeling was not detected in glomeruli or blood vessels of pig kidney. Double-labeling results demonstrated that E-cadherin was expressed in the calbindin D28k-positive distal convoluted tubule and H(+)-ATPase- positive collecting duct, but not in the aquaporin 1-positive, N-cadherin-positive proximal tubule. In contrast to rat, E-cadherin immunoreactivity was not expressed at detectable levels in the Tamm-Horsfall protein-positive thick ascending limb of pig kidney. Immunoelectron microscopy confirmed that E-cadherin was localized in both the lateral membranes and basal infoldings of the collecting duct. These results suggest that E-cadherin may be a critical adhesion molecule in the distal convoluted tubule and collecting duct cells of pig kidney.


Asunto(s)
Cadherinas/genética , Membrana Celular/metabolismo , Regulación de la Expresión Génica , Riñón/metabolismo , Sus scrofa/genética , Animales , Western Blotting/veterinaria , Cadherinas/metabolismo , Membrana Celular/ultraestructura , Masculino , Microscopía Electrónica de Transmisión/veterinaria , Sus scrofa/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA