Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Guang Pu Xue Yu Guang Pu Fen Xi ; 35(2): 304-8, 2015 Feb.
Artículo en Zh | MEDLINE | ID: mdl-25970882

RESUMEN

The present paper presents an auto-focus laser-induced breakdown spectroscopy (LIBS) remote measuring system. This system contains a Schwarzschild telescope, which consists of a convex mirror and a concave mirror. The two spherical mirrors are coaxially placed. The convex mirror is mounted on a motorized linear translation stage. With this motorized linear translation stage, the convex mirror can move along the optical axis to change the spacing between the convex mirror and the concave mirror. Therefore the focal length can be adjusted to focus the laser on samples at different distances and collect the plasma spectra. The advantages of the telescope system include, firstly, the light path of laser focusing and spectra signal collection is the same, which make it easier for mounting and collimation; secondly, the light path of the telescope uses total reflection type, which is fit for the detection in ultra-violate region; finally, the telescope consists of only two spherical mirrors which are relatively easier to manufacture. Within the translation range of the motorized linear translation stage, the focal length of the telescope in this paper can be adjusted from 1.5 to 3.6 m. The diameter of the focusing spot varies from 0.5 to 1.0 mm. Utilizing this telescope system, LIBS experiments were conducted using copper sample. And the characteristic lines of Cu element (Cu I 223.01 nm, Cu I 224.43 nm) obtained are used for the auto focusing. By investigating the relation of the area of spectral lines covered and the spacing between the mirrors, the optimal laser focusing location was obtained. The LIBS experiment results show that the system functions well, fulfilling the demand of remote ablation of sample and LIBS spectral measuring, and the telescope is able to auto-focus the laser on samples at different position to perform remote LIBS experiment.

2.
Guang Pu Xue Yu Guang Pu Fen Xi ; 34(4): 865-8, 2014 Apr.
Artículo en Zh | MEDLINE | ID: mdl-25007588

RESUMEN

Laser-Induced Breakdown Spectroscopy (LIBS) is strongly time related. Time-resolved LIBS measurement is an important technique for the research on laser induced plasma evolution and self-absorption of the emission lines. Concerning the temporal characteristics of LIBS spectrum, a method is proposed in the present paper which can achieve micros-scale time-resolved LIBS measurement by using general ms-scale detector. By setting different integration delay time of the ms-scale spectrum detector, a series of spectrum are recorded. And the integration delay time interval should be longer than the worst temporal precision. After baseline correction and spectrum fitting, the intensity of the character line was obtained. Calculating this intensity with differential method at a certain time interval and then the difference value is the time-resolved line intensity. Setting the plasma duration time as X-axis and the time-resolved line intensity as Y-axis, the evolution curve of the character line intensity can be plotted. Character line with overlap-free and smooth background should be a priority to be chosen for analysis. Using spectrometer with ms-scale integration time and a control system with temporal accuracy is 0.021 micros, experiments carried out. The results validate that this method can be used to characterize the evolution of LIBS characteristic lines and can reduce the cost of the time-resolved LIBS measurement system. This method makes high time-resolved LIBS spectrum measurement possible with cheaper system.

3.
Guang Pu Xue Yu Guang Pu Fen Xi ; 33(12): 3388-91, 2013 Dec.
Artículo en Zh | MEDLINE | ID: mdl-24611408

RESUMEN

Laser-induced breakdown spectroscopy (LIBS) is one of the most promising technologies to be applied to metallurgical composition online monitoring in these days. In order to study the spectral characters of LIBS spectrum and to investigate the quantitative analysis method of material composition under vacuum and high temperature environment, a LIBS measurement system was designed and set up which can be used for conducting experiments with high-temperature or molten samples in different vacuum environment. The system consists of a Q-switched Nd : YAG laser used as the light source, lens with different focus lengths used for laser focusing and spectrum signal collecting, a spectrometer used for detecting the signal of LIBS spectrums, and a vacuum system for holding and heating the samples while supplying a vacuum environment. The vacuum was achieved and maintained by a vacuum pump and an electric induction furnace was used for heating the system. The induction coil was integrated to the vacuum system by attaching to a ceramic sealing flange. The system was installed and testified, and the results indicate that the vacuum of the system can reach 1X 10(-4) Pa without heating, while the heating temperature could be about 1 600 degreeC, the system can be used for melting metal samples such as steel and aluminum and get the LIBS spectrum of the samples at the same time. Utilizing this system, LIBS experiments were conducted using standard steel samples under different vacuum or high-temperature conditions. Results of comparison between LIBS spectrums of solid steel samples under different vacuum were achieved, and so are the spectrums of molten and solid steel samples under vacuum environment. Through data processing and theoretical analyzing of these spectrums, the initial results of those experiments are in good agreement with the results that are presently reported, which indicates that the whole system functions well and is available for molten metal LIBS experiment under vacuum environment.

4.
J Pain Res ; 16: 2251-2256, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37425224

RESUMEN

Purpose: Chronic postsurgical pain (CPSP) is a common complication after thoracic surgery and associated with long-term adverse outcomes. This study aims to develop two prediction models for CPSP after video-assisted thoracic surgery (VATS). Methods and Analysis: This single-center prospective cohort study will include a total of 500 adult patients undergoing VATS lung resection (n = 350 for development and n = 150 for external validation). Patients will be enrolled continuously at The First Affiliated Hospital of Soochow University in Suzhou, China. The cohort for external validation will be recruited in another time period. The outcome is CPSP, which is defined as pain with the numerical rating scale score of 1 or higher 3 months after VATS. Univariate and multivariable logistic regression analyses will be performed to develop two CPSP prediction models based on patients' data of postoperative day 1 and day 14, respectively. For internal validation, we will use the bootstrapping validation technique. For external validation, the discrimination capability of the models will be assessed using the area under the receiver operating characteristic curve, and the calibration will be evaluated using the calibration curve and Hosmer-Lemeshow goodness-of-fit statistic. The results will be presented in model formulas and nomograms. Conclusion: Based on the development and validation of the prediction models, our results contribute to early prediction and treatment of CPSP after VATS. Trial Registration: Chinese Clinical Trial Register (ChiCTR2200066122).

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA