Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
1.
Biochem Biophys Res Commun ; 712-713: 149932, 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38626530

RESUMEN

The DHCR7 enzyme converts 7-DHC into cholesterol. Mutations in DHCR7 can block cholesterol production, leading to abnormal accumulation of 7-DHC and causing Smith-Lemli-Opitz syndrome (SLOS). SLOS is an autosomal recessive disorder characterized by multiple malformations, including microcephaly, intellectual disability, behavior reminiscent of autism, sleep disturbances, and attention-deficit/hyperactivity disorder (ADHD)-like hyperactivity. Although 7-DHC affects neuronal differentiation in ex vivo experiments, the precise mechanism of SLOS remains unclear. We generated Dhcr7 deficient (dhcr7-/-) zebrafish that exhibited key features of SLOS, including microcephaly, decreased neural stem cell pools, and behavioral phenotypes similar to those of ADHD-like hyperactivity. These zebrafish demonstrated compromised myelination, synaptic anomalies, and neurotransmitter imbalances. The axons of the dhcr7-/- zebrafish showed increased lysosomes and attenuated autophagy, suggesting that autophagy-related neuronal homeostasis is disrupted.


Asunto(s)
Axones , Colesterol , Oxidorreductasas actuantes sobre Donantes de Grupo CH-CH , Pez Cebra , Animales , Autofagia , Axones/metabolismo , Colesterol/metabolismo , Lisosomas/metabolismo , Neurogénesis , Neuronas/metabolismo , Oxidorreductasas actuantes sobre Donantes de Grupo CH-CH/metabolismo , Oxidorreductasas actuantes sobre Donantes de Grupo CH-CH/genética , Oxidorreductasas actuantes sobre Donantes de Grupo CH-CH/deficiencia , Síndrome de Smith-Lemli-Opitz/metabolismo , Síndrome de Smith-Lemli-Opitz/genética , Síndrome de Smith-Lemli-Opitz/patología , Pez Cebra/metabolismo , Pez Cebra/genética , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo
2.
Biochem Biophys Res Commun ; 699: 149551, 2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38277730

RESUMEN

V-ATPase is an ATP hydrolysis-driven proton pump involved in the acidification of intracellular organelles and systemic acid-base homeostasis through H+ secretion in the renal collecting ducts. V-ATPase dysfunction is associated with hereditary distal renal tubular acidosis (dRTA). ATP6V1B1 encodes the B1 subunit of V-ATPase that is integral to ATP hydrolysis and subsequent H+ transport. Patients with pathogenic ATP6V1B1 mutations often exhibit an early onset of sensorineural hearing loss. However, the mechanisms underlying this association remain unclear. We employed morpholino oligonucleotide-mediated knockdown and CRISPR/Cas9 gene editing to generate Atp6v1ba-deficient (atp6v1ba-/-) zebrafish as an ortholog model for ATP6V1B1. The atp6v1ba-/- zebrafish exhibited systemic acidosis and significantly smaller otoliths compared to wild-type siblings. Moreover, deficiency in Atp6v1ba led to degeneration of inner ear hair cells, with ultrastructural changes indicative of autophagy. Our findings indicate a critical role of ATP6V1B1 in regulating lysosomal pH and autophagy in hair cells, and the results provide insights into the pathophysiology of sensorineural hearing loss in dRTA. Furthermore, this study demonstrates that the atp6v1ba-/- zebrafish model is a valuable tool for further investigation into disease mechanisms and potential therapies for acidosis-related hearing impairment.


Asunto(s)
Acidosis Tubular Renal , Acidosis , Pérdida Auditiva Sensorineural , Compuestos Organometálicos , ATPasas de Translocación de Protón Vacuolares , Animales , Humanos , Pez Cebra/metabolismo , ATPasas de Translocación de Protón Vacuolares/genética , ATPasas de Translocación de Protón Vacuolares/metabolismo , Pérdida Auditiva Sensorineural/genética , Pérdida Auditiva Sensorineural/patología , Mutación , Acidosis Tubular Renal/genética , Células Ciliadas Auditivas/patología , Concentración de Iones de Hidrógeno , Cabello/metabolismo , Adenosina Trifosfato
3.
Biochem Biophys Res Commun ; 675: 10-18, 2023 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-37429068

RESUMEN

Vaccinia-related kinase 1 (VRK1) is a serine/threonine kinase, for which mutations have been reported cause to neurodegenerative diseases, including spinal muscular atrophy, characterized by microcephaly, motor dysfunction, and impaired cognitive function, in humans. Partial Vrk1 knockdown in mice has been associated with microcephaly and impaired motor function. However, the pathophysiological relationship between VRK1 and neurodegenerative disorders and the precise mechanism of VRK1-related microcephaly and motor function deficits have not been fully investigated. To address this, in this study, we established vrk1-deficient (vrk1-/-) zebrafish and found that they show mild microcephaly and impaired motor function with a low brain dopamine content. Furthermore, vrk1-/- zebrafish exhibited decreased cell proliferation, defects in nuclear envelope formation, and heterochromatin formation in the brain. To our knowledge, this is the first report demonstrating the important role of VRK1 in microcephaly and motor dysfunction in vivo using vrk1-/- zebrafish. These findings contribute to elucidating the pathophysiological mechanisms underlying VRK1-mediated neurodegenerative diseases associated with microcephaly.


Asunto(s)
Microcefalia , Pez Cebra , Animales , Péptidos y Proteínas de Señalización Intracelular , Microcefalia/genética , Proteínas Serina-Treonina Quinasas/genética , Pez Cebra/genética
4.
Genes Cells ; 27(4): 254-265, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35094457

RESUMEN

Vaccinia-related kinase 2 (VRK2) is a serine/threonine kinase initially identified in highly proliferative cells such as thymocytes and fetal liver cells, and it is involved in cell proliferation and survival. VRK2 is also expressed in the brain; however, its molecular function in the central nervous system is mostly unknown. Many genome-wide association studies (GWASs) have reported that VRK2 is a potential candidate molecule for neuropsychiatric diseases such as schizophrenia in humans. However, the pathophysiological relationship between VRK2 and neuropsychiatric disorders has not been fully investigated. In this study, we evaluated vrk2-deficient (vrk2-/- ) zebrafish and found that vrk2-/- female zebrafish showed aggressive behavior and different social preference compared with control (vrk2+/+ ) zebrafish, with low gamma-aminobutyric acid (GABA) content in the brain and high density of neuronal dendrites when compared to vrk2+/+ zebrafish. These findings suggest that female vrk2-/- zebrafish were indeed a model of malbehavior characterized by aggression and social interaction, which can be attributed to the low levels of GABA content in their brain.


Asunto(s)
Estudio de Asociación del Genoma Completo , Proteínas Serina-Treonina Quinasas , Pez Cebra , Agresión , Animales , Femenino , Proteínas Serina-Treonina Quinasas/genética , Pez Cebra/genética , Ácido gamma-Aminobutírico
5.
Biochem Biophys Res Commun ; 624: 95-101, 2022 10 08.
Artículo en Inglés | MEDLINE | ID: mdl-35940133

RESUMEN

Autosomal recessive primary microcephaly (MCPH) is a rare congenital disorder characterized by a below average brain volume at birth and is associated with neurodevelopmental disorders such as growth retardation and intellectual disability. Mutations in ANKLE2 have been identified as one of the causes of MCPH (MCPH16). ANKLE2 is a target molecule of the Zika virus NS4a protein that interferes with ANKLE2 function, resulting in severe microcephaly. ANKLE2 is essential for organizing the nuclear envelope and chromatin structures during the mitotic-end process via barrier to autointegration factor (BAF) dephosphorylation. However, the precise mechanism by which the loss of ANKLE2 function causes the pathogenesis of microcephaly remains unclear. In this study, we generated Ankle2-deficient zebrafish (ankle2-/-) with a significant reduction in brain size compared with that of their control siblings. The ankle2-/- brain showed a significant decrease in the number of radial glial progenitor cells, suggesting that Ankle2 deficiency in zebrafish causes neurogenesis defects. Furthermore, ankle2-/- male zebrafish showed infertility owing to defects in spermatogenesis. Notably, microcephaly was overcome by vrk1 morpholino knockdown or vrk1 heterozygous deletion. In addition, spermatogenesis in ankle2-/- zebrafish males was partially restored by the vrk1 heterozygous deletion, although infertility was not resolved. These results indicate that ANKLE2 and VRK1 coordinate with each other for BAF phosphorylation to maintain normal mitosis during neurogenesis and spermatogenesis.


Asunto(s)
Microcefalia , Infección por el Virus Zika , Virus Zika , Animales , Péptidos y Proteínas de Señalización Intracelular , Masculino , Microcefalia/genética , Microcefalia/patología , Mutación , Proteínas Serina-Treonina Quinasas , Espermatogénesis , Pez Cebra/genética , Pez Cebra/metabolismo
6.
Biol Pharm Bull ; 45(8): 1172-1179, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35908898

RESUMEN

The suprachiasmatic nucleus (SCN) is the master circadian clock in mammals and is properly entrained by environmental light cycle. However, the molecular mechanism(s) determining the magnitude of phase shift by light is still not fully understood. The orphan G-protein-coupled receptor Gpr176 is enriched in the SCN, controls the pace (period) of the circadian rhythm in behavior but is not apparently involved in the light entrainment; Gpr176-/- animals display a shortened circadian period in constant darkness but their phase-resetting responses to light are normal. Here, we performed microarray analysis and identified enhanced mRNA expression of neuromedin U (Nmu) and neuromedin S (Nms) in the SCN of Gpr176-/- mice. By generating C57BL/6J-backcrossed Nmu/Nms/Gpr176 triple knockout mice, we noted that the mutant mice had a greater magnitude of phase shift in response to early subjective night light than wildtype mice, while Nmu/Nms double knockout mice as well as Gpr176 knockout mice are normal in the phase shifts induced by light. At the molecular level, Nmu-/-Nms-/-Gpr176-/- mice had a reduced induction of Per1 and cFos mRNA expression in the SCN by light and mildly upregulated circadian expression of Per2, Prok2, Rgs16, and Rasl11b. These expressional changes may underlie the phenotype of the Nmu/Nms/Gpr176 knockout mice. Our data argue that there is a mechanism requiring Nmu, Nms, and Gpr176 for the proper modulation of light-induced phase shift in mice. Simultaneous modulation of Nmu/Nms/Gpr176 may provide a potential target option for modulating the circadian clock.


Asunto(s)
Relojes Circadianos , Neuropéptidos , Núcleo Supraquiasmático , Animales , Relojes Circadianos/genética , Ritmo Circadiano/genética , Locomoción , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Neuropéptidos/genética , ARN Mensajero/metabolismo , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Núcleo Supraquiasmático/metabolismo
7.
Biochem Biophys Res Commun ; 570: 60-66, 2021 09 17.
Artículo en Inglés | MEDLINE | ID: mdl-34273619

RESUMEN

Cleavage factor polyribonucleotide kinase subunit 1 (CLP1), an RNA kinase, plays essential roles in protein complexes involved in the 3'-end formation and polyadenylation of mRNA and the tRNA splicing endonuclease complex, which is involved in precursor tRNA splicing. The mutation R140H in human CLP1 causes pontocerebellar hypoplasia type 10 (PCH10), which is characterized by microcephaly and axonal peripheral neuropathy. Previously, we reported that RNA fragments derived from isoleucine pre-tRNA introns (Ile-introns) accumulate in fibroblasts of patients with PCH10. Therefore, it has been suggested that this intronic RNA fragment accumulation may trigger PCH10 onset. However, the molecular mechanism underlying PCH10 pathogenesis remains elusive. Thus, we generated knock-in mutant mice that harbored a CLP1 mutation consistent with R140H. As expected, these mice showed progressive loss of the upper motor neurons, resulting in impaired locomotor activity, although the phenotype was milder than that of the human variant. Mechanistically, we found that the R140H mutation causes intracellular accumulation of Ile-introns derived from isoleucine pre-tRNAs and 5' tRNA fragments derived from tyrosine pre-tRNAs, suggesting that these two types of RNA fragments were cooperatively or independently involved in the onset and progression of the disease. Taken together, the CLP1-R140H mouse model provided new insights into the pathogenesis of neurodegenerative diseases, such as PCH10, caused by genetic mutations in tRNA metabolism-related molecules.


Asunto(s)
Enfermedades Cerebelosas/genética , Modelos Biológicos , Mutación/genética , Proteínas Nucleares/genética , Fosfotransferasas/genética , Precursores del ARN/metabolismo , ARN de Transferencia/metabolismo , Factores de Transcripción/genética , Tirosina/metabolismo , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Enfermedades Cerebelosas/complicaciones , Fibroblastos/metabolismo , Humanos , Intrones/genética , Ratones Endogámicos C57BL , Ratones Endogámicos ICR , Microcefalia/complicaciones , Actividad Motora , Neuronas Motoras/metabolismo , Neuronas Motoras/patología , Proteínas Nucleares/química , Fenotipo , Fosfotransferasas/química , Factores de Transcripción/química
8.
J Bone Miner Metab ; 39(1): 64-70, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-32888064

RESUMEN

The receptor-activator of NF-κB ligand (RANKL) and its specific receptor RANK have essential roles in regulating bone metabolism and the immune system. Besides, the RANKL/RANK system plays important roles in multiple physiological and pathophysiological processes such as mammary gland development during pregnancy, cancer development, and bone metastasis. While it has long been known that RANKL and RANK are expressed in the central nervous system (CNS), the physiological roles of RANKL/RANK system in the CNS and the underlying molecular mechanisms have been elucidated recently. Over the last decade, several reports showed that the central RANKL/RANK system plays important roles in regulating body temperature, brain ischemia, autoimmune encephalopathy, feeding behavior, and energy metabolism. In this review, it is provided an updated information regarding the roles of RANKL/RANK system in the CNS.


Asunto(s)
Sistema Nervioso Central/metabolismo , Osteoprotegerina/metabolismo , Ligando RANK/metabolismo , Receptor Activador del Factor Nuclear kappa-B/metabolismo , Animales , Temperatura Corporal , Sistema Nervioso Central/patología , Conducta Alimentaria , Humanos
9.
Int J Mol Sci ; 22(8)2021 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-33921859

RESUMEN

Obesity is now a public health concern. The leading cause of obesity is an energy imbalance between ingested and expended calories. The mechanisms of feeding behavior and energy metabolism are regulated by a complex of various kinds of molecules, including anorexigenic and orexigenic neuropeptides. One of these neuropeptides, neuromedin U (NMU), was isolated in the 1980s, and its specific receptors, NMUR1 and NMUR2, were defined in 2000. A series of subsequent studies has revealed many of the physiological roles of the NMU system, including in feeding behavior, energy expenditure, stress responses, circadian rhythmicity, and inflammation. Particularly over the past decades, many reports have indicated that the NMU system plays an essential and direct role in regulating body weight, feeding behavior, energy metabolism, and insulin secretion, which are tightly linked to obesity pathophysiology. Furthermore, another ligand of NMU receptors, NMS (neuromedin S), was identified in 2005. NMS has physiological functions similar to those of NMU. This review summarizes recent observations of the NMU system in relation to the pathophysiology of obesity in both the central nervous systems and the peripheral tissues.


Asunto(s)
Neuropéptidos/metabolismo , Animales , Metabolismo Energético/fisiología , Conducta Alimentaria/fisiología , Humanos , Obesidad/metabolismo
10.
Biochem Biophys Res Commun ; 533(4): 1470-1476, 2020 12 17.
Artículo en Inglés | MEDLINE | ID: mdl-33333712

RESUMEN

Exosc2 is one of the components of the exosome complex involved in RNA 3' end processing and degradation of various RNAs. Recently, EXOSC2 mutation has been reported in German families presenting short stature, hearing loss, retinitis pigmentosa, and premature aging. However, the in vivo function of EXOSC2 has been elusive. Herein, we generated Exosc2 knockout (exosc2-/-) zebrafish that showed larval lethality 13 days post fertilization, with microcephaly, loss of spinal motor neurons, myelin deficiency, and retinitis pigmentosa. Mechanistically, Exosc2 deficiency caused impaired mRNA turnover, resulting in a nucleotide pool imbalance. Rapamycin, which modulated mRNA turnover by inhibiting the mTOR pathway, improved nucleotide pool imbalance in exosc2-/- zebrafish, resulting in prolonged survival and partial rescue of neuronal defects. Taken together, our findings offer new insights into the disease pathogenesis caused by Exosc2 deficiency, and might help explain fundamental molecular mechanisms in neuronal diseases, such as Alzheimer's disease, amyotrophic lateral sclerosis, and spinal muscular atrophy.


Asunto(s)
Nucleótidos/metabolismo , Pez Cebra/genética , Animales , Animales Modificados Genéticamente , Sistemas CRISPR-Cas , Embrión no Mamífero/anomalías , Regulación del Desarrollo de la Expresión Génica , Técnicas de Inactivación de Genes , Larva/genética , Larva/fisiología , Neuronas Motoras/efectos de los fármacos , Neuronas Motoras/patología , Proteína Básica de Mielina/genética , Nucleótidos/genética , Sirolimus/farmacología , Pez Cebra/embriología
11.
Biochem Biophys Res Commun ; 525(3): 726-732, 2020 05 07.
Artículo en Inglés | MEDLINE | ID: mdl-32143824

RESUMEN

Fragments of transfer RNA (tRNA), derived either from pre-tRNA or mature tRNA, have been discovered to play an essential role in the pathogenesis of various disorders such as neurodegenerative disease. CLP1 is an RNA kinase involved in tRNA biogenesis, and mutations in its encoding gene are responsible for pontocerebellar hypoplasia type-10. Mutation of the CLP1 gene results in the accumulation of tRNA fragments of several different kinds. These tRNA fragments are expected to be associated with the disease pathogenesis. However, it is still unclear which of the tRNA fragments arising from the CLP1 gene mutation has the greatest impact on the onset of neuronal disease. We found that 5' tRNA fragments derived from tyrosine pre-tRNA (5' Tyr-tRF) caused p53-dependent neuronal cell death predominantly more than other types of tRNA fragment. We also showed that 5' Tyr-tRF bound directly to pyruvate kinase M2 (PKM2). Injection of zebrafish embryos with PKM2 mRNA ameliorated the neuronal defects induced in zebrafish embryos by 5' Tyr-tRF. Our findings partially uncovered a mechanistic link between 5' Tyr-tRF and neuronal cell death that is regulated by PKM2.


Asunto(s)
Neuronas/enzimología , Neuronas/patología , Piruvato Quinasa/metabolismo , Precursores del ARN/metabolismo , Proteína p53 Supresora de Tumor/metabolismo , Tirosina/metabolismo , Animales , Muerte Celular , Diferenciación Celular , Línea Celular , Embrión no Mamífero/metabolismo , Humanos , Pez Cebra/embriología
12.
Artículo en Inglés | MEDLINE | ID: mdl-32081435

RESUMEN

CLP1 plays an essential role in the protein complex involved in mRNA 3'-end formation and polyadenylation as well as in the tRNA splicing endonuclease (TSEN) complex involved in the splicing of precursor tRNAs. NOL9 localizes in the nucleolus of cells and plays an essential role in ribosomal RNA maturation. Both CLP1 and NOL9 are RNA kinases that phosphorylate the 5' end of RNAs. From the evidence that phosphorylation of the 5' end of a siRNA is essential for its efficient RNA cleavage, it was expected that CLP1 and NOL9 would be corresponding molecules. However, there had been no direct evidence that this is the case. In this study, murine NOL9 showed no apparent RNA kinase activity in cells or even in an RNA kinase assay using recombinant murine NOL9 protein. Although siRNA efficiency was decreased in CLP1 kinase-dead (Clp1K/K) cells, it was not influenced by NOL9 overexpression. These findings indicate that in mouse cells it is CLP1 that mainly acts to phosphorylate the 5' end of RNAs in the siRNA pathway, with no apparent involvement of NOL9.

13.
Nature ; 495(7442): 474-80, 2013 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-23474986

RESUMEN

CLP1 was the first mammalian RNA kinase to be identified. However, determining its in vivo function has been elusive. Here we generated kinase-dead Clp1 (Clp1(K/K)) mice that show a progressive loss of spinal motor neurons associated with axonal degeneration in the peripheral nerves and denervation of neuromuscular junctions, resulting in impaired motor function, muscle weakness, paralysis and fatal respiratory failure. Transgenic rescue experiments show that CLP1 functions in motor neurons. Mechanistically, loss of CLP1 activity results in accumulation of a novel set of small RNA fragments, derived from aberrant processing of tyrosine pre-transfer RNA. These tRNA fragments sensitize cells to oxidative-stress-induced p53 (also known as TRP53) activation and p53-dependent cell death. Genetic inactivation of p53 rescues Clp1(K/K) mice from the motor neuron loss, muscle denervation and respiratory failure. Our experiments uncover a mechanistic link between tRNA processing, formation of a new RNA species and progressive loss of lower motor neurons regulated by p53.


Asunto(s)
Neuronas Motoras/metabolismo , Neuronas Motoras/patología , ARN de Transferencia de Tirosina/metabolismo , Factores de Transcripción/metabolismo , Esclerosis Amiotrófica Lateral , Animales , Animales Recién Nacidos , Axones/metabolismo , Axones/patología , Muerte Celular , Diafragma/inervación , Pérdida del Embrión , Embrión de Mamíferos/metabolismo , Embrión de Mamíferos/patología , Exones/genética , Femenino , Fibroblastos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Atrofia Muscular Espinal , Enfermedades Neuromusculares/metabolismo , Enfermedades Neuromusculares/patología , Estrés Oxidativo , Procesamiento Postranscripcional del ARN , ARN de Transferencia de Tirosina/genética , Proteínas de Unión al ARN , Respiración , Nervios Espinales/citología , Factores de Transcripción/deficiencia , Proteína p53 Supresora de Tumor/metabolismo , Tirosina/genética , Tirosina/metabolismo
14.
Nature ; 487(7408): 477-81, 2012 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-22837003

RESUMEN

Malnutrition affects up to one billion people in the world and is a major cause of mortality. In many cases, malnutrition is associated with diarrhoea and intestinal inflammation, further contributing to morbidity and death. The mechanisms by which unbalanced dietary nutrients affect intestinal homeostasis are largely unknown. Here we report that deficiency in murine angiotensin I converting enzyme (peptidyl-dipeptidase A) 2 (Ace2), which encodes a key regulatory enzyme of the renin-angiotensin system (RAS), results in highly increased susceptibility to intestinal inflammation induced by epithelial damage. The RAS is known to be involved in acute lung failure, cardiovascular functions and SARS infections. Mechanistically, ACE2 has a RAS-independent function, regulating intestinal amino acid homeostasis, expression of antimicrobial peptides, and the ecology of the gut microbiome. Transplantation of the altered microbiota from Ace2 mutant mice into germ-free wild-type hosts was able to transmit the increased propensity to develop severe colitis. ACE2-dependent changes in epithelial immunity and the gut microbiota can be directly regulated by the dietary amino acid tryptophan. Our results identify ACE2 as a key regulator of dietary amino acid homeostasis, innate immunity, gut microbial ecology, and transmissible susceptibility to colitis. These results provide a molecular explanation for how amino acid malnutrition can cause intestinal inflammation and diarrhoea.


Asunto(s)
Colitis/etiología , Colitis/microbiología , Intestinos/microbiología , Desnutrición/complicaciones , Metagenoma , Peptidil-Dipeptidasa A/metabolismo , Triptófano/metabolismo , Enzima Convertidora de Angiotensina 2 , Animales , Biocatálisis , Colitis/tratamiento farmacológico , Colitis/patología , Sulfato de Dextran , Diarrea/complicaciones , Proteínas en la Dieta/metabolismo , Proteínas en la Dieta/farmacología , Femenino , Eliminación de Gen , Predisposición Genética a la Enfermedad , Vida Libre de Gérmenes , Homeostasis , Inmunidad Innata , Intestinos/patología , Masculino , Desnutrición/metabolismo , Ratones , Modelos Biológicos , Niacinamida/metabolismo , Niacinamida/farmacología , Niacinamida/uso terapéutico , Peptidil-Dipeptidasa A/deficiencia , Peptidil-Dipeptidasa A/genética , Sistema Renina-Angiotensina/fisiología , Serina-Treonina Quinasas TOR/metabolismo , Ácido Trinitrobencenosulfónico , Triptófano/farmacología , Triptófano/uso terapéutico
16.
Nature ; 468(7320): 98-102, 2010 Nov 04.
Artículo en Inglés | MEDLINE | ID: mdl-20881962

RESUMEN

Breast cancer is one of the most common cancers in humans and will on average affect up to one in eight women in their lifetime in the United States and Europe. The Women's Health Initiative and the Million Women Study have shown that hormone replacement therapy is associated with an increased risk of incident and fatal breast cancer. In particular, synthetic progesterone derivatives (progestins) such as medroxyprogesterone acetate (MPA), used in millions of women for hormone replacement therapy and contraceptives, markedly increase the risk of developing breast cancer. Here we show that the in vivo administration of MPA triggers massive induction of the key osteoclast differentiation factor RANKL (receptor activator of NF-κB ligand) in mammary-gland epithelial cells. Genetic inactivation of the RANKL receptor RANK in mammary-gland epithelial cells prevents MPA-induced epithelial proliferation, impairs expansion of the CD49f(hi) stem-cell-enriched population, and sensitizes these cells to DNA-damage-induced cell death. Deletion of RANK from the mammary epithelium results in a markedly decreased incidence and delayed onset of MPA-driven mammary cancer. These data show that the RANKL/RANK system controls the incidence and onset of progestin-driven breast cancer.


Asunto(s)
Neoplasias Mamarias Experimentales/inducido químicamente , Neoplasias Mamarias Experimentales/patología , Progestinas/efectos adversos , Ligando RANK/metabolismo , Animales , Apoptosis/efectos de la radiación , Diferenciación Celular , Proliferación Celular/efectos de los fármacos , Daño del ADN , Células Epiteliales/citología , Células Epiteliales/efectos de los fármacos , Células Epiteliales/metabolismo , Células Epiteliales/efectos de la radiación , Femenino , Rayos gamma , Integrina alfa6/metabolismo , Neoplasias Mamarias Experimentales/genética , Neoplasias Mamarias Experimentales/metabolismo , Acetato de Medroxiprogesterona/administración & dosificación , Acetato de Medroxiprogesterona/efectos adversos , Ratones , FN-kappa B/metabolismo , Osteoclastos/citología , Fosfoproteínas/análisis , Fosfoproteínas/inmunología , Progestinas/administración & dosificación , Ligando RANK/deficiencia , Ligando RANK/genética , Receptor Activador del Factor Nuclear kappa-B/deficiencia , Receptor Activador del Factor Nuclear kappa-B/genética , Receptor Activador del Factor Nuclear kappa-B/metabolismo , Transducción de Señal , Células Madre/citología , Células Madre/efectos de los fármacos , Células Madre/metabolismo
17.
Nature ; 462(7272): 505-9, 2009 Nov 26.
Artículo en Inglés | MEDLINE | ID: mdl-19940926

RESUMEN

Receptor-activator of NF-kappaB ligand (TNFSF11, also known as RANKL, OPGL, TRANCE and ODF) and its tumour necrosis factor (TNF)-family receptor RANK are essential regulators of bone remodelling, lymph node organogenesis and formation of a lactating mammary gland. RANKL and RANK are also expressed in the central nervous system. However, the functional relevance of RANKL/RANK in the brain was entirely unknown. Here we report that RANKL and RANK have an essential role in the brain. In both mice and rats, central RANKL injections trigger severe fever. Using tissue-specific Nestin-Cre and GFAP-Cre rank(floxed) deleter mice, the function of RANK in the fever response was genetically mapped to astrocytes. Importantly, Nestin-Cre and GFAP-Cre rank(floxed) deleter mice are resistant to lipopolysaccharide-induced fever as well as fever in response to the key inflammatory cytokines IL-1beta and TNFalpha. Mechanistically, RANKL activates brain regions involved in thermoregulation and induces fever via the COX2-PGE(2)/EP3R pathway. Moreover, female Nestin-Cre and GFAP-Cre rank(floxed) mice exhibit increased basal body temperatures, suggesting that RANKL and RANK control thermoregulation during normal female physiology. We also show that two children with RANK mutations exhibit impaired fever during pneumonia. These data identify an entirely novel and unexpected function for the key osteoclast differentiation factors RANKL/RANK in female thermoregulation and the central fever response in inflammation.


Asunto(s)
Regulación de la Temperatura Corporal/efectos de los fármacos , Regulación de la Temperatura Corporal/fisiología , Fiebre/inducido químicamente , Fiebre/metabolismo , Ligando RANK/farmacología , Receptor Activador del Factor Nuclear kappa-B/metabolismo , Caracteres Sexuales , Animales , Astrocitos/efectos de los fármacos , Astrocitos/metabolismo , Niño , Dinoprostona/metabolismo , Femenino , Fiebre/complicaciones , Perfilación de la Expresión Génica , Humanos , Inyecciones Intraventriculares , Masculino , Ratones , Ratones Endogámicos C57BL , Neumonía/complicaciones , Neumonía/metabolismo , Ligando RANK/administración & dosificación , Ligando RANK/antagonistas & inhibidores , Ligando RANK/metabolismo , Ratas , Ratas Wistar , Receptor Activador del Factor Nuclear kappa-B/genética , Receptores de Prostaglandina E/metabolismo , Subtipo EP3 de Receptores de Prostaglandina E
18.
Nat Med ; 13(10): 1234-40, 2007 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-17873881

RESUMEN

Bone remodeling, the function affected in osteoporosis, the most common of bone diseases, comprises two phases: bone formation by matrix-producing osteoblasts and bone resorption by osteoclasts. The demonstration that the anorexigenic hormone leptin inhibits bone formation through a hypothalamic relay suggests that other molecules that affect energy metabolism in the hypothalamus could also modulate bone mass. Neuromedin U (NMU) is an anorexigenic neuropeptide that acts independently of leptin through poorly defined mechanisms. Here we show that Nmu-deficient (Nmu-/-) mice have high bone mass owing to an increase in bone formation; this is more prominent in male mice than female mice. Physiological and cell-based assays indicate that NMU acts in the central nervous system, rather than directly on bone cells, to regulate bone remodeling. Notably, leptin- or sympathetic nervous system-mediated inhibition of bone formation was abolished in Nmu-/- mice, which show an altered bone expression of molecular clock genes (mediators of the inhibition of bone formation by leptin). Moreover, treatment of wild-type mice with a natural agonist for the NMU receptor decreased bone mass. Collectively, these results suggest that NMU may be the first central mediator of leptin-dependent regulation of bone mass identified to date. Given the existence of inhibitors and activators of NMU action, our results may influence the treatment of diseases involving low bone mass, such as osteoporosis.


Asunto(s)
Remodelación Ósea/efectos de los fármacos , Neuropéptidos/metabolismo , Neuropéptidos/farmacología , Absorciometría de Fotón , Animales , Densidad Ósea/efectos de los fármacos , Proliferación Celular , Células Cultivadas , Relación Dosis-Respuesta a Droga , Femenino , Inmunohistoquímica , Leptina/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Mutantes , Modelos Biológicos , Neuropéptidos/análisis , Neuropéptidos/genética , Osteoblastos/efectos de los fármacos , Osteoblastos/fisiología , Factores Sexuales , Sistema Nervioso Simpático/metabolismo , Tomografía Computarizada por Rayos X
19.
Behav Brain Res ; 464: 114920, 2024 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-38403178

RESUMEN

Epilepsy, a recurrent neurological disorder involving abnormal neurotransmitter kinetics in the brain, has emerged as a global health concern. The mechanism of epileptic seizures is thought to involve a relative imbalance between excitatory and inhibitory neurotransmitters. Despite the recent advances in clinical and basic research on the pathogenesis of epilepsy, the complex relationship between the neurotransmitter changes and behavior with and without antiepileptic drugs (AEDs) during seizures remains unclear. To investigate the effects of AEDs such as levetiracetam (LEV), carbamazepine (CBZ), and fenfluramine (FFR) on key neurotransmitters in the pentylenetetrazol (PTZ)-induced seizures in adult zebrafish, we examined the changes in glutamic acid, gamma-aminobutyric acid (GABA), serotonin (5-HT), 5-hydroxyindoleacetic acid (5-HIAA), choline, acetylcholine, norepinephrine, dopamine (DA), 3,4-dihydroxyphenylacetic acid (DOPAC), and adenosine. In this study, we observed that 5-HT and DA levels in the brain increased immediately after PTZ-induced seizures. Behavioral tests clearly showed that all of these AEDs suppressed the PTZ-induced seizures. Upon treatment of PTZ-induced seizures with these AEDs, CBZ decreased the glutamic acid and FFR increased the GABA levels; however, no neurotransmitter changes were observed in the brain after LEV administration. Thus, we demonstrated a series of neurotransmitter changes linked to behavioral changes during PTZ-induced epileptic seizures when LEV, CBZ, or FFR were administered. These findings will lead to a more detailed understanding of the pathogenesis of epilepsy associated with behavioral and neurotransmitter changes under AED treatment.


Asunto(s)
Anticonvulsivantes , Epilepsia , Animales , Anticonvulsivantes/efectos adversos , Pez Cebra , Pentilenotetrazol/toxicidad , Ácido Glutámico , Serotonina , Convulsiones/inducido químicamente , Convulsiones/tratamiento farmacológico , Carbamazepina/farmacología , Levetiracetam/farmacología , Levetiracetam/uso terapéutico , Ácido gamma-Aminobutírico , Neurotransmisores
20.
Orphanet J Rare Dis ; 19(1): 219, 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38807157

RESUMEN

BACKGROUND: Biallelic pathogenic variants of LARS1 cause infantile liver failure syndrome type 1 (ILFS1), which is characterized by acute hepatic failure with steatosis in infants. LARS functions as a protein associated with mTORC1 and plays a crucial role in amino acid-triggered mTORC1 activation and regulation of autophagy. A previous study demonstrated that larsb-knockout zebrafish exhibit conditions resembling ILFS. However, a comprehensive analysis of larsb-knockout zebrafish has not yet been performed because of early mortality. METHODS: We generated a long-term viable zebrafish model carrying a LARS1 variant identified in an ILFS1 patient (larsb-I451F zebrafish) and analyzed the pathogenesis of the affected liver of ILFS1. RESULTS: Hepatic dysfunction is most prominent in ILFS1 patients during infancy; correspondingly, the larsb-I451F zebrafish manifested hepatic anomalies during developmental stages. The larsb-I451F zebrafish demonstrates augmented lipid accumulation within the liver during autophagy activation. Inhibition of DGAT1, which converts fatty acids to triacylglycerols, improved lipid droplets in the liver of larsb-I451F zebrafish. Notably, treatment with an autophagy inhibitor ameliorated hepatic lipid accumulation in this model. CONCLUSIONS: Our findings suggested that enhanced autophagy caused by biallelic LARS1 variants contributes to ILFS1-associated hepatic dysfunction. Furthermore, the larsb-I451F zebrafish model, which has a prolonged survival rate compared with the larsb-knockout model, highlights its potential utility as a tool for investigating the pathophysiology of ILFS1-associated liver dysfunction.


Asunto(s)
Autofagia , Hígado Graso , Hígado , Pez Cebra , Animales , Autofagia/genética , Hígado Graso/genética , Hígado Graso/metabolismo , Hígado Graso/patología , Hígado/metabolismo , Hígado/patología , Humanos , Modelos Animales de Enfermedad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA