Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Oecologia ; 182(2): 587-94, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-27318697

RESUMEN

Significant changes in plant phenology and flower production are predicted over the next century, but we know relatively little about geographic patterns of this response in many species, even those that potentially impact human wellbeing. We tested for variation in flowering responses of the allergenic plant, Ambrosia artemisiifolia (common ragweed). We grew plants originating from three latitudes in the Northeastern USA at experimental levels of CO2 (400, 600, and 800 µL L(-1)). We hypothesized that northern ecotypes adapted to shorter growing seasons would flower earlier than their southern counterparts, and thus disproportionately allocate carbon gains from CO2 to reproduction. As predicted, latitude of origin and carbon dioxide level significantly influenced the timing and magnitude of flowering. Reproductive onset occurred earlier with increasing latitude, with concurrent increases in the number of flowers produced. Elevated carbon dioxide resulted in earlier reproductive onset in all ecotypes, which was significantly more pronounced in the northern populations. We interpret our findings as evidence for ecotypic variation in ragweed flowering time, as well in responses to CO2. Thus, the ecological and human health implications of common ragweed's response to global change are likely to depend on latitude. We conclude that increased flower production, duration, and possibly pollen output, can be expected in Northeastern United States with rising levels of CO2. The effects are likely, however, to be most significant in northern parts of the region.


Asunto(s)
Ambrosia , Ecotipo , Flores , Humanos , Polen , Estaciones del Año , Estornudo
2.
Am J Bot ; 99(9): 1445-52, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-22912369

RESUMEN

PREMISE OF THE STUDY: Agricultural soils have become contaminated with a variety of heavy metals, including cadmium. The degree to which soil contaminants affect plants may depend on symbiotic relationships between plant roots and soil microorganisms. We examined (1) whether mycorrhizal fungi counteract the potentially negative effects of cadmium on the growth and fitness of flax (Linum usitatissimum) and (2) whether mycorrhizal fungi affect the accumulation of cadmium within plant parts. METHODS: Two flax cultivars (Linott and Omega) were grown in three soil cadmium environments (0, 5, and 15 ppm). Within each cadmium environment, plants were grown in either the presence or absence of mycorrhizal fungi. Upon senescence, we measured growth and fitness and quantified the concentration of cadmium within plants. KEY RESULTS: Soil cadmium significantly decreased plant fitness, but did not affect plant growth. Mycorrhizal fungi, which were able to colonize roots of plants growing in all cadmium levels, significantly increased plant growth and fitness. Although mycorrhizal fungi counteracted the negative effects of cadmium on fruit and seed production, they also enhanced the concentration of cadmium within roots, fruits, and seeds. CONCLUSIONS: The degree to which soil cadmium affects plant fitness and the accumulation of cadmium within plants depended on the ability of plants to form symbiotic relationships with mycorrhizal fungi. The use of mycorrhizal fungi in contaminated agricultural soils may offset the negative effects of metals on the quantity of seeds produced, but exacerbate the accumulation of these metals in our food supply.


Asunto(s)
Cadmio/metabolismo , Cadmio/toxicidad , Lino/crecimiento & desarrollo , Lino/microbiología , Micorrizas/efectos de los fármacos , Análisis de Varianza , Biomasa , Recuento de Colonia Microbiana , Lino/anatomía & histología , Lino/efectos de los fármacos , Frutas/efectos de los fármacos , Frutas/metabolismo , Hojas de la Planta/efectos de los fármacos , Hojas de la Planta/metabolismo , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/metabolismo , Tallos de la Planta/efectos de los fármacos , Tallos de la Planta/metabolismo , Semillas/efectos de los fármacos , Semillas/metabolismo , Suelo/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA