Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
J Am Chem Soc ; 142(2): 710-714, 2020 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-31885262

RESUMEN

Biosynthetic pathways containing multiple core enzymes have potential to produce structurally complex natural products. Here we mined a fungal gene cluster that contains two predicted terpene cyclases (TCs) and a nonribosomal peptide synthetase (NRPS). We showed the flv pathway produces flavunoidine 1, an alkaloidal terpenoid. The core of 1 is a tetracyclic, cage-like, and oxygenated sesquiterpene that is connected to dimethylcadaverine via a C-N bond and is acylated with 5,5-dimethyl-l-pipecolate. The roles of all flv enzymes are established on the basis of metabolite analysis from heterologous expression.


Asunto(s)
Alcaloides/química , Genoma , Péptidos/química , Terpenos/química , Ribosomas/química
2.
J Am Chem Soc ; 140(6): 2067-2071, 2018 02 14.
Artículo en Inglés | MEDLINE | ID: mdl-29373009

RESUMEN

UCS1025A is a fungal polyketide/alkaloid that displays strong inhibition of telomerase. The structures of UCS1025A and related natural products are featured by a tricyclic furopyrrolizidine connected to a trans-decalin fragment. We mined the genome of a thermophilic fungus and activated the ucs gene cluster to produce UCS1025A at a high titer. Genetic and biochemical analysis revealed a PKS-NRPS assembly line that activates 2S,3S-methylproline derived from l-isoleucine, followed by Knoevenagel condensation to construct the pyrrolizidine moiety. Oxidation of the 3S-methyl group to a carboxylate leads to an oxa-Michael cyclization and furnishes the furopyrrolizidine. Our work reveals a new strategy used by nature to construct heterocyclic alkaloid-like ring systems using assembly line logic.


Asunto(s)
Vías Biosintéticas , Familia de Multigenes , Péptido Sintasas/metabolismo , Sintasas Poliquetidas/metabolismo , Alcaloides de Pirrolicidina/metabolismo , Sordariales/enzimología , Ciclización , Genes Fúngicos , Péptido Sintasas/genética , Sintasas Poliquetidas/genética , Sordariales/genética , Sordariales/metabolismo
3.
Anal Chem ; 90(3): 1635-1642, 2018 02 06.
Artículo en Inglés | MEDLINE | ID: mdl-29266927

RESUMEN

Methods to detect low concentrations of small molecules are useful for a wide range of analytical problems including the development of clinical assays, the study of complex biological systems, and the detection of biological warfare agents. This paper describes a semisynthetic ion channel platform capable of detecting small molecule analytes with picomolar sensitivity. Our methodology exploits the transient nature of ion channels formed from gramicidin A (gA) nanopores and the frequency of observed single channel events as a function of concentration of free gA molecules that reversibly dimerize in a bilayer membrane. We initially use a protein (here, a monoclonal antibody) to sequester the ion channel activity of a C-terminally modified gA derivative. When a small molecule analyte is introduced to the electrical recording medium, it competitively binds to the protein and liberates the gA derivative, restoring its single ion channel activity. We found that monitoring the frequency of gA channel events makes it possible to detect picomolar concentrations of small molecule in solution. In part, due to the digital on/off nature of frequency-based analysis, this approach is 103 times more sensitive than measuring macroscopic membrane ion flux through gA channels as a basis for detection. This novel methodology, therefore, significantly improves the limit of detection of nanopore-based sensors for small molecule analytes, which has the potential for incorporation into miniaturized and low cost devices that could complement current established assays.


Asunto(s)
Técnicas Biosensibles/métodos , Fluoresceínas/análisis , Gramicidina/metabolismo , Canales Iónicos/metabolismo , Membrana Dobles de Lípidos/metabolismo , Anticuerpos Monoclonales/inmunología , Fluoresceínas/síntesis química , Fluoresceínas/química , Gramicidina/análogos & derivados , Gramicidina/síntesis química , Haptenos/inmunología , Límite de Detección , Membrana Dobles de Lípidos/química , Nanoporos
4.
J Am Chem Soc ; 139(15): 5317-5320, 2017 04 19.
Artículo en Inglés | MEDLINE | ID: mdl-28365998

RESUMEN

Fungal polyketide synthases (PKSs) can function collaboratively to synthesize natural products of significant structural diversity. Here we present a new mode of collaboration between a highly reducing PKS (HRPKS) and a PKS-nonribosomal peptide synthetase (PKS-NRPS) in the synthesis of oxaleimides from the Penicillium species. The HRPKS is recruited in the synthesis of an olefin-containing free amino acid, which is activated and incorporated by the adenylation domain of the PKS-NRPS. The precisely positioned olefin from the unnatural amino acid is proposed to facilitate a scaffold rearrangement of the PKS-NRPS product to forge the maleimide and succinimide cores of oxaleimides.


Asunto(s)
Productos Biológicos/metabolismo , Maleimidas/metabolismo , Penicillium/enzimología , Sintasas Poliquetidas/metabolismo , Succinimidas/metabolismo , Productos Biológicos/química , Maleimidas/química , Conformación Molecular , Sintasas Poliquetidas/química , Succinimidas/química
5.
Angew Chem Int Ed Engl ; 56(32): 9556-9560, 2017 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-28679030

RESUMEN

Fungal polyketides have significant biological activities, yet the biosynthesis by highly reducing polyketide synthases (HRPKSs) remains enigmatic. An uncharacterized group of HRPKSs was found to contain a C-terminal domain with significant homology to carnitine O-acyltransferase (cAT). Characterization of one such HRPKS (Tv6-931) from Trichoderma virens showed that the cAT domain is capable of esterifying the polyketide product with polyalcohol nucleophiles. This process is readily reversible, as confirmed through the holo ACP-dependent transesterification of the released product. The methyltransferase (MT) domain of Tv6-931 can perform two consecutive α-methylation steps on the last ß-keto intermediate to yield an α,α-gem-dimethyl product, a new programing feature among HRPKSs. Recapturing of the released product by cAT domain is suggested to facilitate complete gem-dimethylation by the MT.


Asunto(s)
Carnitina Aciltransferasas/metabolismo , Sintasas Poliquetidas/metabolismo , Trichoderma/enzimología , Biocatálisis , Productos Biológicos/química , Productos Biológicos/metabolismo , Dominio Catalítico , Metabolómica , Estructura Molecular
6.
J Am Chem Soc ; 138(12): 4249-59, 2016 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-26978228

RESUMEN

Phenalenones are polyketide natural products that display diverse structures and biological activities. The core of phenalenones is a peri-fused tricyclic ring system cyclized from a linear polyketide precursor via an unresolved mechanism. Toward understanding the unusual cyclization steps, the phn biosynthetic gene cluster responsible for herqueinone biosynthesis was identified from the genome of Penicillium herquei. A nonreducing polyketide synthase (NR-PKS) PhnA was shown to synthesize the heptaketide backbone and cyclize it into the angular, hemiketal-containing naphtho-γ-pyrone prephenalenone. The product template (PT) domain of PhnA catalyzes only the C4-C9 aldol condensation, which is unprecedented among known PT domains. The transformation of prephenalenone to phenalenone requires an FAD-dependent monooxygenase (FMO) PhnB, which catalyzes the C2 aromatic hydroxylation of prephenalenone and ring opening of the γ-pyrone ring simultaneously. Density functional theory calculations provide insights into why the hydroxylated intermediate undergoes an aldol-like phenoxide-ketone cyclization to yield the phenalenone core. This study therefore unveiled new routes and biocatalysts for polyketide cyclization.


Asunto(s)
Flavinas/metabolismo , Oxigenasas/metabolismo , Fenalenos/química , Sintasas Poliquetidas/metabolismo , Catálisis , Cromatografía Liquida , Ciclización , Hongos/enzimología , Hongos/genética , Estructura Molecular , Familia de Multigenes , Sintasas Poliquetidas/genética
7.
J Am Chem Soc ; 138(41): 13529-13532, 2016 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-27690412

RESUMEN

Nature synthesizes many strained natural products that have diverse biological activities. Uncovering these biosynthetic pathways may lead to biomimetic strategies for organic synthesis of such compounds. In this work, we elucidated the concise biosynthetic pathway of herquline A, a highly strained and reduced fungal piperazine alkaloid. The pathway builds on a nonribosomal peptide synthetase derived dityrosine piperazine intermediate. Following enzymatic reduction of the P450-cross-linked dicyclohexadienone, N-methylation of the piperazine serves as a trigger that leads to a cascade of stereoselective and nonenzymatic transformations. Computational analysis of key steps in the pathway rationalizes the observed reactivities.

8.
Org Lett ; 19(13): 3560-3563, 2017 07 07.
Artículo en Inglés | MEDLINE | ID: mdl-28605916

RESUMEN

Zaragozic acid A (1) is a potent cholesterol lowering, polyketide natural product made by various filamentous fungi. The reconstitution of enzymes responsible for the initial steps of the biosynthetic pathway of 1 is accomplished using an engineered fungal heterologous host. These initial steps feature the priming of a benzoic acid starter unit onto a highly reducing polyketide synthase (HRPKS), followed by oxaloacetate extension and product release to generate a tricarboxylic acid containing product 2. The reconstitution studies demonstrated that only three enzymes, HRPKS, citrate synthase, and hydrolase, are needed in A. nidulans to produce the structurally complex product.


Asunto(s)
Policétidos/química , Vías Biosintéticas , Compuestos Bicíclicos Heterocíclicos con Puentes , Estructura Molecular , Sintasas Poliquetidas , Ácidos Tricarboxílicos
9.
ACS Catal ; 6(9): 5935-5945, 2016 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-28529817

RESUMEN

Fungal polyketides are natural products with great chemical diversity that exhibit a wide range of biological activity. This chemical diversity stems from specialized enzymes encoded in the biosynthetic gene cluster responsible for the natural product biosynthesis. Fungal polyketide synthases (PKS) are the megasynthases that produce the carbon scaffolds for the molecules. Subsequent downstream tailoring enzymes such as oxygenases will then further modify the organic framework. In fungi, many of these enzymes have been found to work iteratively-catalyzing multiple reactions on different sites of the substrate. This perspective will analyze several examples of fungal polyketides that are assembled from a scaffold-building iterative PKS and an accompanying iterative tailoring oxygenase. In these examples, the PKS product is designed for downstream iterative oxygenations to generate additional complexity. Together, these iterative enzymes orchestrate the efficient biosynthesis of elaborate natural products such as lovastatin, chaetoglobosin A, cytochalasin E, and aurovertin E.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA