Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
1.
Plant Cell ; 32(4): 1124-1135, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32051213

RESUMEN

Autophagy plays an important role in plant-pathogen interactions. Several pathogens including viruses induce autophagy in plants, but the underpinning mechanism remains largely unclear. Furthermore, in virus-plant interactions, viral factor(s) that induce autophagy have yet to be identified. Here, we report that the ßC1 protein of Cotton leaf curl Multan betasatellite (CLCuMuB) interacts with cytosolic glyceraldehyde-3-phosphate dehydrogenase (GAPC), a negative autophagic regulator, to induce autophagy in Nicotiana benthamiana CLCuMuB ßC1 bound to GAPCs and disrupted the interaction between GAPCs and autophagy-related protein 3 (ATG3). A mutant ßC1 protein (ßC13A) in which I45, Y48, and I53 were all substituted with Ala (A), had a dramatically reduced binding capacity with GAPCs, failed to disrupt the GAPCs-ATG3 interactions and failed to induce autophagy. Furthermore, mutant virus carrying ßC13A showed increased symptoms and viral DNA accumulation associated with decreased autophagy in plants. These results suggest that CLCuMuB ßC1 activates autophagy by disrupting GAPCs-ATG3 interactions.


Asunto(s)
Proteínas Relacionadas con la Autofagia/metabolismo , Autofagia , Begomovirus/metabolismo , Gliceraldehído-3-Fosfato Deshidrogenasas/metabolismo , Nicotiana/metabolismo , Nicotiana/virología , Proteínas de Plantas/metabolismo , Proteínas Virales/metabolismo , Unión Proteica , Nicotiana/ultraestructura , Vacuolas/metabolismo , Vacuolas/ultraestructura
2.
Proc Natl Acad Sci U S A ; 117(29): 16928-16937, 2020 07 21.
Artículo en Inglés | MEDLINE | ID: mdl-32636269

RESUMEN

Whereas most of the arthropod-borne animal viruses replicate in their vectors, this is less common for plant viruses. So far, only some plant RNA viruses have been demonstrated to replicate in insect vectors and plant hosts. How plant viruses evolved to replicate in the animal kingdom remains largely unknown. Geminiviruses comprise a large family of plant-infecting, single-stranded DNA viruses that cause serious crop losses worldwide. Here, we report evidence and insight into the replication of the geminivirus tomato yellow leaf curl virus (TYLCV) in the whitefly (Bemisia tabaci) vector and that replication is mainly in the salivary glands. We found that TYLCV induces DNA synthesis machinery, proliferating cell nuclear antigen (PCNA) and DNA polymerase δ (Polδ), to establish a replication-competent environment in whiteflies. TYLCV replication-associated protein (Rep) interacts with whitefly PCNA, which recruits DNA Polδ for virus replication. In contrast, another geminivirus, papaya leaf curl China virus (PaLCuCNV), does not replicate in the whitefly vector. PaLCuCNV does not induce DNA-synthesis machinery, and the Rep does not interact with whitefly PCNA. Our findings reveal important mechanisms by which a plant DNA virus replicates across the kingdom barrier in an insect and may help to explain the global spread of this devastating pathogen.


Asunto(s)
Begomovirus/fisiología , ADN Polimerasa III/metabolismo , Hemípteros/virología , Proteínas de Insectos/metabolismo , Insectos Vectores/virología , Replicación Viral , Animales , Begomovirus/genética , ADN Polimerasa III/genética , Gossypium/parasitología , Gossypium/virología , Hemípteros/patogenicidad , Interacciones Huésped-Patógeno , Proteínas de Insectos/genética , Insectos Vectores/patogenicidad , Glándulas Salivales/metabolismo , Glándulas Salivales/virología
3.
PLoS Genet ; 16(10): e1008623, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-33052904

RESUMEN

Plant cells undergo two types of cell cycles-the mitotic cycle in which DNA replication is coupled to mitosis, and the endocycle in which DNA replication occurs in the absence of cell division. To investigate DNA replication programs in these two types of cell cycles, we pulse labeled intact root tips of maize (Zea mays) with 5-ethynyl-2'-deoxyuridine (EdU) and used flow sorting of nuclei to examine DNA replication timing (RT) during the transition from a mitotic cycle to an endocycle. Comparison of the sequence-based RT profiles showed that most regions of the maize genome replicate at the same time during S phase in mitotic and endocycling cells, despite the need to replicate twice as much DNA in the endocycle and the fact that endocycling is typically associated with cell differentiation. However, regions collectively corresponding to 2% of the genome displayed significant changes in timing between the two types of cell cycles. The majority of these regions are small with a median size of 135 kb, shift to a later RT in the endocycle, and are enriched for genes expressed in the root tip. We found larger regions that shifted RT in centromeres of seven of the ten maize chromosomes. These regions covered the majority of the previously defined functional centromere, which ranged between 1 and 2 Mb in size in the reference genome. They replicate mainly during mid S phase in mitotic cells but primarily in late S phase of the endocycle. In contrast, the immediately adjacent pericentromere sequences are primarily late replicating in both cell cycles. Analysis of CENH3 enrichment levels in 8C vs 2C nuclei suggested that there is only a partial replacement of CENH3 nucleosomes after endocycle replication is complete. The shift to later replication of centromeres and possible reduction in CENH3 enrichment after endocycle replication is consistent with a hypothesis that centromeres are inactivated when their function is no longer needed.


Asunto(s)
Momento de Replicación del ADN/genética , Replicación del ADN/efectos de los fármacos , Raíces de Plantas/genética , Zea mays/genética , Núcleo Celular/efectos de los fármacos , Núcleo Celular/genética , Centrómero/efectos de los fármacos , Centrómero/genética , Replicación del ADN/genética , Momento de Replicación del ADN/efectos de los fármacos , ADN de Plantas/efectos de los fármacos , ADN de Plantas/genética , Desoxiuridina/análogos & derivados , Desoxiuridina/farmacología , Endocitosis/efectos de los fármacos , Meristema/efectos de los fármacos , Meristema/genética , Mitosis/efectos de los fármacos , Mitosis/genética , Nucleosomas/efectos de los fármacos , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/crecimiento & desarrollo , Fase S/genética , Zea mays/crecimiento & desarrollo
4.
J Virol ; 95(21): e0043221, 2021 10 13.
Artículo en Inglés | MEDLINE | ID: mdl-34406866

RESUMEN

Cassava mosaic disease (CMD), which is caused by single-stranded DNA begomoviruses, severely limits cassava production across Africa. A previous study showed that CMD symptom severity and viral DNA accumulation increase in cassava in the presence of a DNA sequence designated SEGS-2 (sequence enhancing geminivirus symptoms). We report here that when SEGS-2 is coinoculated with African cassava mosaic virus (ACMV) onto Arabidopsis thaliana, viral symptoms increase. Transgenic Arabidopsis with an integrated copy of SEGS-2 inoculated with ACMV also display increased symptom severity and viral DNA levels. Moreover, SEGS-2 enables Cabbage leaf curl virus (CaLCuV) to infect a geminivirus-resistant Arabidopsis thaliana accession. Although SEGS-2 is related to cassava genomic sequences, an earlier study showed that it occurs as episomes and is packaged into virions in CMD-infected cassava and viruliferous whiteflies. We identified SEGS-2 episomes in SEGS-2 transgenic Arabidopsis. The episomes occur as both double-stranded and single-stranded DNA, with the single-stranded form packaged into virions. In addition, SEGS-2 episomes replicate in tobacco protoplasts in the presence, but not the absence, of ACMV DNA-A. SEGS-2 episomes contain a SEGS-2 derived promoter and an open reading frame with the potential to encode a 75-amino acid protein. An ATG mutation at the beginning of the SEGS-2 coding region does not enhance ACMV infection in A. thaliana. Together, the results established that SEGS-2 is a new type of begomovirus satellite that enhances viral disease through the action of an SEGS-2-encoded protein that may also be encoded by the cassava genome. IMPORTANCE Cassava is an important root crop in the developing world and a food and income crop for more than 300 million African farmers. Cassava is rising in global importance and trade as the demands for biofuels and commercial starch increase. More than half of the world's cassava is produced in Africa, where it is primarily grown by smallholder farmers, many of whom are from the poorest villages. Although cassava can grow under high temperature, drought, and poor soil conditions, its production is severely limited by viral diseases. Cassava mosaic disease (CMD) is one of the most important viral diseases of cassava and can cause up to 100% yield losses. We provide evidence that SEGS-2, which was originally isolated from cassava crops displaying severe and atypical CMD symptoms in Tanzanian fields, is a novel begomovirus satellite that can compromise the development of durable CMD resistance.


Asunto(s)
Begomovirus/genética , Begomovirus/aislamiento & purificación , Manihot/virología , Enfermedades de las Plantas/virología , Virus Satélites/genética , Virus Satélites/aislamiento & purificación , Begomovirus/clasificación , Begomovirus/patogenicidad , ADN Viral/genética , Genoma Viral , Mutación , Filogenia , Recombinación Genética , Virus Satélites/clasificación , Virus Satélites/patogenicidad , Nicotiana/virología
5.
J Gen Virol ; 102(7)2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34310272

RESUMEN

Cassava mosaic disease (CMD) represents a serious threat to cassava, a major root crop for more than 300 million Africans. CMD is caused by single-stranded DNA begomoviruses that evolve rapidly, making it challenging to develop durable disease resistance. In addition to the evolutionary forces of mutation, recombination and reassortment, factors such as climate, agriculture practices and the presence of DNA satellites may impact viral diversity. To gain insight into the factors that alter and shape viral diversity in planta, we used high-throughput sequencing to characterize the accumulation of nucleotide diversity after inoculation of infectious clones corresponding to African cassava mosaic virus (ACMV) and East African cassava mosaic Cameroon virus (EACMCV) in the susceptible cassava landrace Kibandameno. We found that vegetative propagation had a significant effect on viral nucleotide diversity, while temperature and a satellite DNA did not have measurable impacts in our study. EACMCV diversity increased linearly with the number of vegetative propagation passages, while ACMV diversity increased for a time and then decreased in later passages. We observed a substitution bias toward C→T and G→A for mutations in the viral genomes consistent with field isolates. Non-coding regions excluding the promoter regions of genes showed the highest levels of nucleotide diversity for each genome component. Changes in the 5' intergenic region of DNA-A resembled the sequence of the cognate DNA-B sequence. The majority of nucleotide changes in coding regions were non-synonymous, most with predicted deleterious effects on protein structure, indicative of relaxed selection pressure over six vegetative passages. Overall, these results underscore the importance of knowing how cropping practices affect viral evolution and disease progression.


Asunto(s)
Begomovirus/genética , Variación Genética , Manihot/crecimiento & desarrollo , Manihot/virología , Enfermedades de las Plantas/virología , Secuencia de Bases , Begomovirus/fisiología , Codón , ADN Intergénico , ADN Viral/genética , Evolución Molecular , Genoma Viral , Mutación , Polimorfismo de Nucleótido Simple , Virus Satélites/genética , Virus Satélites/fisiología , Eliminación de Secuencia , Temperatura , Proteínas Virales/genética
6.
Plant Physiol ; 183(1): 206-220, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32205451

RESUMEN

The selection and firing of DNA replication origins play key roles in ensuring that eukaryotes accurately replicate their genomes. This process is not well documented in plants due in large measure to difficulties in working with plant systems. We developed a new functional assay to label and map very early replicating loci that must, by definition, include at least a subset of replication origins. Arabidopsis (Arabidopsis thaliana) cells were briefly labeled with 5-ethynyl-2'-deoxy-uridine, and nuclei were subjected to two-parameter flow sorting. We identified more than 5500 loci as initiation regions (IRs), the first regions to replicate in very early S phase. These were classified as strong or weak IRs based on the strength of their replication signals. Strong initiation regions were evenly spaced along chromosomal arms and depleted in centromeres, while weak initiation regions were enriched in centromeric regions. IRs are AT-rich sequences flanked by more GC-rich regions and located predominantly in intergenic regions. Nuclease sensitivity assays indicated that IRs are associated with accessible chromatin. Based on these observations, initiation of plant DNA replication shows some similarity to, but is also distinct from, initiation in other well-studied eukaryotic systems.


Asunto(s)
Arabidopsis/metabolismo , Cromatina/metabolismo , ADN de Plantas/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Replicación del ADN/genética , Replicación del ADN/fisiología , ADN de Plantas/fisiología , Origen de Réplica/genética , Origen de Réplica/fisiología
7.
J Virol ; 93(6)2019 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-30626668

RESUMEN

In plants, RNA-directed DNA methylation (RdDM)-mediated transcriptional gene silencing (TGS) is a natural antiviral defense against geminiviruses. Several geminiviral proteins have been shown to target the enzymes related to the methyl cycle or histone modification; however, it remains largely unknown whether and by which mechanism geminiviruses directly inhibit RdDM-mediated TGS. In this study, we showed that Cotton leaf curl Multan virus (CLCuMuV) V2 directly interacts with Nicotiana benthamiana AGO4 (NbAGO4) and that the L76S mutation in V2 (V2L76S) abolishes such interaction. We further showed that V2, but not V2L76S, can suppresses RdDM and TGS. Silencing of NbAGO4 inhibits TGS, reduces the viral methylation level, and enhances CLCuMuV DNA accumulation. In contrast, the V2L76S substitution mutant attenuates CLCuMuV infection and enhances the viral methylation level. These findings reveal that CLCuMuV V2 contributes to viral infection by interaction with NbAGO4 to suppress RdDM-mediated TGS in plants.IMPORTANCE In plants, the RNA-directed DNA methylation (RdDM) pathway is a natural antiviral defense mechanism against geminiviruses. However, how geminiviruses counter RdDM-mediated defense is largely unknown. Our findings reveal that Cotton leaf curl Multan virus V2 contributes to viral infection by interaction with NbAGO4 to suppress RNA-directed DNA methylation-mediated transcriptional gene silencing in plants. Our work provides the first evidence that a geminiviral protein is able to directly target core RdDM components to counter RdDM-mediated TGS antiviral defense in plants, which extends our current understanding of viral counters to host antiviral defense.


Asunto(s)
Geminiviridae/genética , Silenciador del Gen/fisiología , Transcripción Genética/genética , Proteínas Virales/genética , Begomovirus/genética , Metilación de ADN/genética , ADN Viral/genética , Interacciones Huésped-Patógeno/genética , Enfermedades de las Plantas/virología , Nicotiana/virología
8.
PLoS Pathog ; 14(8): e1007282, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-30157283

RESUMEN

Gene silencing is a natural antiviral defense mechanism in plants. For effective infection, plant viruses encode viral silencing suppressors to counter this plant antiviral response. The geminivirus-encoded C4 protein has been identified as a gene silencing suppressor, but the underlying mechanism of action has not been characterized. Here, we report that Cotton Leaf Curl Multan virus (CLCuMuV) C4 protein interacts with S-adenosyl methionine synthetase (SAMS), a core enzyme in the methyl cycle, and inhibits SAMS enzymatic activity. By contrast, an R13A mutation in C4 abolished its capacity to interact with SAMS and to suppress SAMS enzymatic activity. Overexpression of wild-type C4, but not mutant C4R13A, suppresses both transcriptional gene silencing (TGS) and post-transcriptional gene silencing (PTGS). Plants infected with CLCuMuV carrying C4R13A show decreased levels of symptoms and viral DNA accumulation associated with enhanced viral DNA methylation. Furthermore, silencing of NbSAMS2 reduces both TGS and PTGS, but enhanced plant susceptibility to two geminiviruses CLCuMuV and Tomato yellow leaf curl China virus. These data suggest that CLCuMuV C4 suppresses both TGS and PTGS by inhibiting SAMS activity to enhance CLCuMuV infection in plants.


Asunto(s)
Begomovirus/patogenicidad , Silenciador del Gen , Metionina Adenosiltransferasa/metabolismo , Interferencia de ARN , Proteínas Virales/metabolismo , Begomovirus/metabolismo , Regulación hacia Abajo/genética , Regulación de la Expresión Génica de las Plantas , Interacciones Huésped-Patógeno/genética , Metionina Adenosiltransferasa/genética , Plantas Modificadas Genéticamente , Unión Proteica , Nicotiana/genética , Nicotiana/metabolismo , Transcripción Genética , Proteínas Virales/fisiología
9.
Plant Cell ; 29(9): 2126-2149, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28842533

RESUMEN

All plants and animals must replicate their DNA, using a regulated process to ensure that their genomes are completely and accurately replicated. DNA replication timing programs have been extensively studied in yeast and animal systems, but much less is known about the replication programs of plants. We report a novel adaptation of the "Repli-seq" assay for use in intact root tips of maize (Zea mays) that includes several different cell lineages and present whole-genome replication timing profiles from cells in early, mid, and late S phase of the mitotic cell cycle. Maize root tips have a complex replication timing program, including regions of distinct early, mid, and late S replication that each constitute between 20 and 24% of the genome, as well as other loci corresponding to ∼32% of the genome that exhibit replication activity in two different time windows. Analyses of genomic, transcriptional, and chromatin features of the euchromatic portion of the maize genome provide evidence for a gradient of early replicating, open chromatin that transitions gradually to less open and less transcriptionally active chromatin replicating in mid S phase. Our genomic level analysis also demonstrated that the centromere core replicates in mid S, before heavily compacted classical heterochromatin, including pericentromeres and knobs, which replicate during late S phase.


Asunto(s)
Momento de Replicación del ADN/genética , Genómica , Meristema/citología , Meristema/genética , Mitosis/genética , Fase S/genética , Zea mays/citología , Zea mays/genética , Secuencia de Bases , Cromosomas de las Plantas/genética , Elementos Transponibles de ADN/genética , Genes de Plantas , Modelos Genéticos , Secuencias Repetidas en Tándem/genética , Factores de Tiempo , Transcripción Genética
10.
Plant J ; 96(2): 287-299, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-30003607

RESUMEN

Diacylglycerol acyltransferase 1 (DGAT1) catalyzes the final and committed step in the Kennedy pathway for triacylglycerol (TAG) biosynthesis and, as such, elucidating its mode of regulation is critical to understand the fundamental aspects of carbon metabolism in oleaginous crops. In this study, purified Brassica napus diacylglycerol acyltransferase 1 (BnaDGAT1) in n-dodecyl-ß-d-maltopyranoside micelles was lipidated to form mixed micelles and subjected to detailed biochemical analysis. The degree of mixed micelle fluidity appeared to influence acyltransferase activity. BnaDGAT1 exhibited a sigmoidal response and eventual substrate inhibition with respect to increasing concentrations of oleoyl-CoA. Phosphatidate (PA) was identified as a feed-forward activator of BnaDGAT1, enabling the final enzyme in the Kennedy pathway to adjust to the incoming flow of carbon leading to TAG. In the presence of PA, the oleoyl-CoA saturation plot became more hyperbolic and desensitized to substrate inhibition indicating that PA facilitates the transition of the enzyme into the more active state. PA may also relieve possible autoinhibition of BnaDGAT1 brought about by the N-terminal regulatory domain, which was shown to interact with PA. Indeed, PA is a key effector modulating lipid homeostasis, in addition to its well recognized role in lipid signaling. BnaDGAT1 was also shown to be a substrate of the sucrose non-fermenting-1-related kinase 1 (SnRK1), which catalyzed phosphorylation of the enzyme and converted it to a less active form. Thus, this known regulator of carbon metabolism directly influences TAG biosynthesis.


Asunto(s)
Brassica napus/enzimología , Diacilglicerol O-Acetiltransferasa/metabolismo , Ácidos Fosfatidicos/metabolismo , Triglicéridos/biosíntesis , Acilcoenzima A/metabolismo , Brassica napus/genética , Metabolismo de los Hidratos de Carbono , Catálisis , Diacilglicerol O-Acetiltransferasa/genética , Metabolismo Energético , Homeostasis , Lípidos/fisiología , Fosforilación , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo
11.
Plant Physiol ; 178(1): 372-389, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-30006378

RESUMEN

Geminiviruses are single-stranded DNA viruses that infect a wide variety of plants and cause severe crop losses worldwide. The geminivirus replication initiator protein (Rep) binds to the viral replication origin and catalyzes DNA cleavage and ligation to initiate rolling circle replication. In this study, we found that the Tomato golden mosaic virus (TGMV) Rep is phosphorylated at serine-97 by sucrose nonfermenting 1-related protein kinase 1 (SnRK1), a master regulator of plant energy homeostasis and metabolism. Phosphorylation of Rep or the phosphomimic S97D mutation impaired Rep binding to viral DNA. A TGMV DNA-A replicon containing the Rep S97D mutation replicated less efficiently in tobacco (Nicotiana tabacum) protoplasts than in wild-type or Rep phosphorylation-deficient replicons. The TGMV Rep-S97D mutant also was less infectious than the wild-type virus in Nicotiana benthamiana and was unable to infect tomato (Solanum lycopersicum). Nearly all geminivirus Rep proteins have a serine residue at the position equivalent to TGMV Rep serine-97. SnRK1 phosphorylated the equivalent serines in the Rep proteins of Tomato mottle virus and Tomato yellow leaf curl virus and reduced DNA binding, suggesting that SnRK1 plays a key role in combating geminivirus infection. These results established that SnRK1 phosphorylates Rep and interferes with geminivirus replication and infection, underscoring the emerging role for SnRK1 in the host defense response against plant pathogens.


Asunto(s)
Begomovirus/metabolismo , Proteínas de Plantas/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Virales/metabolismo , Replicación Viral , Secuencia de Aminoácidos , Begomovirus/genética , Begomovirus/fisiología , Interacciones Huésped-Patógeno , Solanum lycopersicum/enzimología , Solanum lycopersicum/virología , Mutación , Fosforilación , Enfermedades de las Plantas/virología , Proteínas de Plantas/genética , Unión Proteica , Dominios Proteicos , Proteínas Serina-Treonina Quinasas/genética , Homología de Secuencia de Aminoácido , Serina/genética , Serina/metabolismo , Proteínas Virales/química , Proteínas Virales/genética
12.
Plant Physiol ; 176(3): 2166-2185, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29301956

RESUMEN

Eukaryotes use a temporally regulated process, known as the replication timing program, to ensure that their genomes are fully and accurately duplicated during S phase. Replication timing programs are predictive of genomic features and activity and are considered to be functional readouts of chromatin organization. Although replication timing programs have been described for yeast and animal systems, much less is known about the temporal regulation of plant DNA replication or its relationship to genome sequence and chromatin structure. We used the thymidine analog, 5-ethynyl-2'-deoxyuridine, in combination with flow sorting and Repli-Seq to describe, at high-resolution, the genome-wide replication timing program for Arabidopsis (Arabidopsis thaliana) Col-0 suspension cells. We identified genomic regions that replicate predominantly during early, mid, and late S phase, and correlated these regions with genomic features and with data for chromatin state, accessibility, and long-distance interaction. Arabidopsis chromosome arms tend to replicate early while pericentromeric regions replicate late. Early and mid-replicating regions are gene-rich and predominantly euchromatic, while late regions are rich in transposable elements and primarily heterochromatic. However, the distribution of chromatin states across the different times is complex, with each replication time corresponding to a mixture of states. Early and mid-replicating sequences interact with each other and not with late sequences, but early regions are more accessible than mid regions. The replication timing program in Arabidopsis reflects a bipartite genomic organization with early/mid-replicating regions and late regions forming separate, noninteracting compartments. The temporal order of DNA replication within the early/mid compartment may be modulated largely by chromatin accessibility.


Asunto(s)
Arabidopsis/genética , Cromatina/genética , Cromosomas de las Plantas , Momento de Replicación del ADN , Cromatina/metabolismo , Elementos Transponibles de ADN , Citometría de Flujo , Genoma de Planta , Estudio de Asociación del Genoma Completo , Fase S/genética , Análisis de Secuencia de ADN/métodos
13.
Plant J ; 92(5): 796-807, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-28901681

RESUMEN

Geminiviruses are DNA viruses that cause severe crop losses in different parts of the world, and there is a need for genetic sources of resistance to help combat them. Arabidopsis has been used as a source for virus-resistant genes that derive from alterations in essential host factors. We used a virus-induced gene silencing (VIGS) vector derived from the geminivirus Cabbage leaf curl virus (CaLCuV) to assess natural variation in virus-host interactions in 190 Arabidopsis accessions. Silencing of CH-42, encoding a protein needed to make chlorophyll, was used as a visible marker to discriminate asymptomatic accessions from those showing resistance. There was a wide range in symptom severity and extent of silencing in different accessions, but two correlations could be made. Lines with severe symptoms uniformly lacked extensive VIGS, and lines that showed attenuated symptoms over time (recovery) showed a concomitant increase in the extent of VIGS. One accession, Pla-1, lacked both symptoms and silencing, and was immune to wild-type infectious clones corresponding to CaLCuV or Beet curly top virus (BCTV), which are classified in different genera in the Geminiviridae. It also showed resistance to the agronomically important Tomato yellow leaf curl virus (TYLCV). Quantitative trait locus mapping of a Pla-1 X Col-0 F2 population was used to detect a major peak on chromosome 1, which is designated gip-1 (geminivirus immunity Pla-1-1). The recessive nature of resistance to CaLCuV and the lack of obvious candidate genes near the gip-1 locus suggest that a novel resistance gene(s) confers immunity.


Asunto(s)
Arabidopsis/virología , Geminiviridae/inmunología , Enfermedades de las Plantas/virología , Inmunidad de la Planta , Silenciador del Gen , Enfermedades de las Plantas/inmunología , Sitios de Carácter Cuantitativo/genética
14.
BMC Bioinformatics ; 18(1): 362, 2017 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-28784090

RESUMEN

BACKGROUND: Replication timing experiments that use label incorporation and high throughput sequencing produce peaked data similar to ChIP-Seq experiments. However, the differences in experimental design, coverage density, and possible results make traditional ChIP-Seq analysis methods inappropriate for use with replication timing. RESULTS: To accurately detect and classify regions of replication across the genome, we present Repliscan. Repliscan robustly normalizes, automatically removes outlying and uninformative data points, and classifies Repli-seq signals into discrete combinations of replication signatures. The quality control steps and self-fitting methods make Repliscan generally applicable and more robust than previous methods that classify regions based on thresholds. CONCLUSIONS: Repliscan is simple and effective to use on organisms with different genome sizes. Even with analysis window sizes as small as 1 kilobase, reliable profiles can be generated with as little as 2.4x coverage.


Asunto(s)
Momento de Replicación del ADN , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Análisis de Secuencia de ADN/métodos , Programas Informáticos , Genoma , Tamaño del Genoma
15.
Mol Plant Microbe Interact ; 30(7): 515-516, 2017 07.
Artículo en Inglés | MEDLINE | ID: mdl-28398839

RESUMEN

Reader Comments | Submit a Comment The white paper reports the deliberations of a workshop focused on biotic challenges to plant health held in Washington, D.C. in September 2016. Ensuring health of food plants is critical to maintaining the quality and productivity of crops and for sustenance of the rapidly growing human population. There is a close linkage between food security and societal stability; however, global food security is threatened by the vulnerability of our agricultural systems to numerous pests, pathogens, weeds, and environmental stresses. These threats are aggravated by climate change, the globalization of agriculture, and an over-reliance on nonsustainable inputs. New analytical and computational technologies are providing unprecedented resolution at a variety of molecular, cellular, organismal, and population scales for crop plants as well as pathogens, pests, beneficial microbes, and weeds. It is now possible to both characterize useful or deleterious variation as well as precisely manipulate it. Data-driven, informed decisions based on knowledge of the variation of biotic challenges and of natural and synthetic variation in crop plants will enable deployment of durable interventions throughout the world. These should be integral, dynamic components of agricultural strategies for sustainable agriculture.


Asunto(s)
Agricultura/métodos , Productos Agrícolas/crecimiento & desarrollo , Abastecimiento de Alimentos , Investigación Biomédica Traslacional/métodos , Biotecnología/métodos , Cambio Climático , Productos Agrícolas/microbiología , Productos Agrícolas/parasitología , Humanos , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/parasitología
16.
J Virol ; 90(8): 4160-4173, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26865712

RESUMEN

UNLABELLED: Cassava mosaic begomoviruses (CMBs) cause cassava mosaic disease (CMD) across Africa and the Indian subcontinent. Like all members of the geminivirus family, CMBs have small, circular single-stranded DNA genomes. We report here the discovery of two novel DNA sequences, designated SEGS-1 and SEGS-2 (forsequencesenhancinggeminivirussymptoms), that enhance symptoms and break resistance to CMD. The SEGS are characterized by GC-rich regions and the absence of long open reading frames. Both SEGS enhanced CMD symptoms in cassava (Manihot esculentaCrantz) when coinoculated withAfrican cassava mosaic virus(ACMV),East African cassava mosaic Cameroon virus(EACMCV), orEast African cassava mosaic virus-Uganda(EACMV-UG). SEGS-1 also overcame resistance of a cassava landrace carrying the CMD2 resistance locus when coinoculated with EACMV-UG. Episomal forms of both SEGS were detected in CMB-infected cassava but not in healthy cassava. SEGS-2 episomes were also found in virions and whiteflies. SEGS-1 has no homology to geminiviruses or their associated satellites, but the cassava genome contains a sequence that is 99% identical to full-length SEGS-1. The cassava genome also includes three sequences with 84 to 89% identity to SEGS-2 that together encompass all of SEGS-2 except for a 52-bp region, which includes the episomal junction and a 26-bp sequence related to alphasatellite replication origins. These results suggest that SEGS-1 is derived from the cassava genome and facilitates CMB infection as an integrated copy and/or an episome, while SEGS-2 was originally from the cassava genome but now is encapsidated into virions and transmitted as an episome by whiteflies. IMPORTANCE: Cassava is a major crop in the developing world, with its production in Africa being second only to maize. CMD is one of the most important diseases of cassava and a serious constraint to production across Africa. CMD2 is a major CMD resistance locus that has been deployed in many cassava cultivars through large-scale breeding programs. In recent years, severe, atypical CMD symptoms have been observed occasionally on resistant cultivars, some of which carry the CMD2 locus, in African fields. In this report, we identified and characterized two DNA sequences, SEGS-1 and SEGS-2, which produce similar symptoms when coinoculated with cassava mosaic begomoviruses onto a susceptible cultivar or a CMD2-resistant landrace. The ability of SEGS-1 to overcome CMD2 resistance and the transmission of SEGS-2 by whiteflies has major implications for the long-term durability of CMD2 resistance and underscore the need for alternative sources of resistance in cassava.


Asunto(s)
Begomovirus/genética , ADN Viral , Manihot/virología , Enfermedades de las Plantas/virología , Secuencia de Bases , Begomovirus/patogenicidad , Clonación Molecular , Genoma Viral , Virus del Mosaico/genética , Virus del Mosaico/patogenicidad , Enfermedades de las Plantas/inmunología , Plásmidos/genética , Tanzanía , Nicotiana
17.
Plant Cell ; 26(1): 102-20, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24488963

RESUMEN

Scaffold or matrix attachment regions (S/MARs) are found in all eukaryotes. The pattern of distribution and genomic context of S/MARs is thought to be important for processes such as chromatin organization and modulation of gene expression. Despite the importance of such processes, much is unknown about the large-scale distribution and sequence content of S/MARs in vivo. Here, we report the use of tiling microarrays to map 1358 S/MARs on Arabidopsis thaliana chromosome 4 (chr4). S/MARs occur throughout chr4, spaced much more closely than in the large plant and animal genomes that have been studied to date. Arabidopsis S/MARs can be divided into five clusters based on their association with other genomic features, suggesting a diversity of functions. While some Arabidopsis S/MARs may define structural domains, most occur near the transcription start sites of genes. Genes associated with these S/MARs have an increased probability of expression, which is particularly pronounced in the case of transcription factor genes. Analysis of sequence motifs and 6-mer enrichment patterns show that S/MARs are preferentially enriched in poly(dA:dT) tracts, sequences that resist nucleosome formation, and the majority of S/MARs contain at least one nucleosome-depleted region. This global view of S/MARs provides a framework to begin evaluating genome-scale models for S/MAR function.


Asunto(s)
Proteínas de Arabidopsis/fisiología , Arabidopsis/genética , Regiones de Fijación a la Matriz , Nucleosomas/metabolismo , Poli dA-dT/metabolismo , Factores de Transcripción/fisiología , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Cromatina/metabolismo , Regulación de la Expresión Génica de las Plantas , Motivos de Nucleótidos , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
18.
J Exp Bot ; 67(21): 6077-6087, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-27697785

RESUMEN

The duration of the DNA synthesis stage (S phase) of the cell cycle is fundamental in our understanding of cell cycle kinetics, cell proliferation, and DNA replication timing programs. Most S-phase duration estimates that exist for plants are based on indirect measurements. We present a method for directly estimating S-phase duration by pulse-labeling root tips or actively dividing suspension cells with the halogenated thymidine analog 5-ethynl-2'-deoxyuridine (EdU) and analyzing the time course of replication with bivariate flow cytometry. The transition between G1 and G2 DNA contents can be followed by measuring the mean DNA content of EdU-labeled S-phase nuclei as a function of time after the labeling pulse. We applied this technique to intact root tips of maize (Zea mays L.), rice (Oryza sativa L.), barley (Hordeum vulgare L.), and wheat (Triticum aestivum L.), and to actively dividing cell cultures of Arabidopsis (Arabidopsis thaliana (L.) Heynh.) and rice. Estimates of S-phase duration in root tips were remarkably consistent, varying only by ~3-fold, although the genome sizes of the species analyzed varied >40-fold.


Asunto(s)
Citometría de Flujo/métodos , Fase S , Arabidopsis/citología , Arabidopsis/crecimiento & desarrollo , ADN de Plantas/metabolismo , Desoxiuridina/análogos & derivados , Desoxiuridina/metabolismo , Fase G1/fisiología , Fase G2/fisiología , Hordeum/citología , Hordeum/crecimiento & desarrollo , Meristema/citología , Meristema/crecimiento & desarrollo , Oryza/citología , Oryza/crecimiento & desarrollo , Fase S/fisiología , Triticum/citología , Triticum/crecimiento & desarrollo , Zea mays/citología , Zea mays/crecimiento & desarrollo
19.
Plant Mol Biol ; 89(4-5): 339-51, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26394866

RESUMEN

Spatiotemporal patterns of DNA replication have been described for yeast and many types of cultured animal cells, frequently after cell cycle arrest to aid in synchronization. However, patterns of DNA replication in nuclei from plants or naturally developing organs remain largely uncharacterized. Here we report findings from 3D quantitative analysis of DNA replication and endoreduplication in nuclei from pulse-labeled developing maize root tips. In both early and middle S phase nuclei, flow-sorted on the basis of DNA content, replicative labeling was widely distributed across euchromatic regions of the nucleoplasm. We did not observe the perinuclear or perinucleolar replicative labeling patterns characteristic of middle S phase in mammals. Instead, the early versus middle S phase patterns in maize could be distinguished cytologically by correlating two quantitative, continuous variables, replicative labeling and DAPI staining. Early S nuclei exhibited widely distributed euchromatic labeling preferentially localized to regions with weak DAPI signals. Middle S nuclei also exhibited widely distributed euchromatic labeling, but the label was preferentially localized to regions with strong DAPI signals. Highly condensed heterochromatin, including knobs, replicated during late S phase as previously reported. Similar spatiotemporal replication patterns were observed for both mitotic and endocycling maize nuclei. These results revealed that maize euchromatin exists as an intermingled mixture of two components distinguished by their condensation state and replication timing. These different patterns might reflect a previously described genome organization pattern, with "gene islands" mostly replicating during early S phase followed by most of the intergenic repetitive regions replicating during middle S phase.


Asunto(s)
Replicación del ADN/genética , Endorreduplicación/genética , Zea mays/crecimiento & desarrollo , Zea mays/genética , Núcleo Celular/genética , Núcleo Celular/metabolismo , Momento de Replicación del ADN/genética , ADN de Plantas/biosíntesis , ADN de Plantas/genética , Genes de Plantas , Imagenología Tridimensional , Meristema/genética , Meristema/crecimiento & desarrollo , Meristema/metabolismo , Modelos Biológicos , Fase S/genética , Zea mays/metabolismo
20.
J Virol ; 88(18): 10598-612, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-24990996

RESUMEN

UNLABELLED: Geminivirus AL2/C2 proteins play key roles in establishing infection and causing disease in their plant hosts. They are involved in viral gene expression, counter host defenses by suppressing transcriptional gene silencing, and interfere with the host signaling involved in pathogen resistance. We report here that begomovirus and curtovirus AL2/C2 proteins interact strongly with host geminivirus Rep-interacting kinases (GRIKs), which are upstream activating kinases of the protein kinase SnRK1, a global regulator of energy and nutrient levels in plants. We used an in vitro kinase system to show that GRIK-activated SnRK1 phosphorylates recombinant AL2/C2 proteins from several begomoviruses and to map the SnRK1 phosphorylation site to serine-109 in the AL2 proteins of two New World begomoviruses: Cabbage Leaf Curl Virus (CaLCuV) and Tomato mottle virus. A CaLCuV AL2 S109D phosphomimic mutation did not alter viral DNA levels in protoplast replication assays. In contrast, the phosphomimic mutant was delayed for symptom development and viral DNA accumulation during infection of Arabidopsis thaliana, demonstrating that SnRK1 contributes to host defenses against CaLCuV. Our observation that serine-109 is not conserved in all AL2/C2 proteins that are SnRK1 substrates in vitro suggested that phosphorylation of viral proteins by plant kinases contributes to the evolution of geminivirus-host interactions. IMPORTANCE: Geminiviruses are single-stranded DNA viruses that cause serious diseases in many crops. Dicot-infecting geminiviruses carry genes that encode multifunctional AL2/C2 proteins that are essential for infection. However, it is not clear how AL2/C2 proteins are regulated. Here, we show that the host protein kinase SnRK1, a central regulator of energy balance and nutrient metabolism in plants, phosphorylates serine-109 in AL2 proteins of three subgroups of New World begomoviruses, resulting in a delay in viral DNA accumulation and symptom appearance. Our results support SnRK1's antiviral role and reveal a novel mechanism underlying this function. Phylogenetic analysis suggested that AL2 S109 evolved as begomoviruses migrated from the Old World to the New World and may have provided a selective advantage as begomoviruses adapted to a different environment and different plant hosts. This study provides new insights into the interaction of viral pathogens with their plant hosts at the level of viral protein modification by the host.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimología , Arabidopsis/virología , Begomovirus/metabolismo , Enfermedades de las Plantas/virología , Factores de Transcripción/metabolismo , Proteínas Virales/metabolismo , Secuencia de Aminoácidos , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Begomovirus/química , Begomovirus/clasificación , Begomovirus/genética , Interacciones Huésped-Patógeno , Datos de Secuencia Molecular , Filogenia , Unión Proteica , Proteínas Quinasas/genética , Proteínas Quinasas/metabolismo , Factores de Transcripción/genética , Proteínas Virales/química , Proteínas Virales/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA