Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
J Dairy Sci ; 104(1): 211-220, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33162087

RESUMEN

Nontuberculous mycobacteria (NTM) compose a group of mycobacteria that do not belong to the Mycobacterium tuberculosis complex group. They are frequently isolated from environmental samples such as water, soil, and, to a lesser extent, food samples. Isolates of NTM represent a major health threat to humans worldwide, especially those who have asthma or are immunocompromised. Human disease is acquired from environmental exposures and through consumption of NTM-contaminated food. The most common clinical manifestation of NTM disease in human is lung disease, but lymphatic, skin and soft tissue, and disseminated disease are also important. The main objective of the current study was to profile the farm-level contamination of cow milk with NTM by examining milk filters and bulk tank milk samples. Five different NTM species were isolated in one dairy herd in Wisconsin, with confirmed 16S rRNA genotypes including Mycobacterium fortuitum, Mycobacterium avium ssp. hominissuis, Mycobacterium abscessus, Mycobacterium simiae, and Mycobacterium avium ssp. paratuberculosis (Mycobacterium paratuberculosis). In tank milk samples, M. fortuitum was the predominant species in 48% of the samples, whereas M. chelonae/abscessus and M. fortuitum were the only 2 species obtained from 77 and 23% of the examined filters, respectively. Surprisingly, M. avium ssp. hominissuis, M. paratuberculosis, and M. simiae were isolated from 16.7, 10.4, and 4% of the examined milk samples, respectively, but not from milk filters. Interestingly, NTM isolates from human clinical cases in Wisconsin clustered very closely with those from milk samples. These findings suggest that the problem of NTM contamination is underestimated in dairy herds and could contribute to human infections with NTM. Overall, the study validates the use of bulk tank samples rather than milk filters to assess contamination of milk with NTM. Nontuberculous mycobacteria represent one type of pathogens that extensively contaminate raw milk at the farm level. The significance of our research is in evaluating the existence of NTM at the farm level and identifying a simple approach to examine the potential milk contamination with NTM members using tank milk or milk filters from dairy operations. In addition, we attempted to examine the potential link between NTM isolates found in the farm to those circulating in humans in Wisconsin.


Asunto(s)
Leche/microbiología , Infecciones por Mycobacterium no Tuberculosas/microbiología , Micobacterias no Tuberculosas/clasificación , Micobacterias no Tuberculosas/genética , Animales , Bovinos , Femenino , Contaminación de Alimentos , Almacenamiento de Alimentos , Genotipo , Humanos , Mycobacterium/aislamiento & purificación , Infecciones por Mycobacterium no Tuberculosas/veterinaria , Mycobacterium avium subsp. paratuberculosis/genética , Micobacterias no Tuberculosas/aislamiento & purificación , ARN Ribosómico 16S , Wisconsin
2.
J Dairy Sci ; 100(12): 9723-9735, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-28987590

RESUMEN

When advising farmers on how to control Johne's disease in an infected herd, one of the main recommendations is to avoid feeding waste milk to calves and instead feed calf milk replacer (CMR). This advice is based on the assumption that CMR is free of viable Mycobacterium avium ssp. paratuberculosis (MAP) cells, an assumption that has not previously been challenged. We tested commercial CMR products (n = 83) obtained from dairy farms around the United States by the peptide-mediated magnetic separation (PMS)-phage assay, PMS followed by liquid culture (PMS-culture), and direct IS900 quantitative PCR (qPCR). Conventional microbiological analyses for total mesophilic bacterial counts, coliforms, Salmonella, coagulase-negative staphylococci, streptococci, nonhemolytic Corynebacterium spp., and Bacillus spp. were also performed to assess the overall microbiological quality of the CMR. Twenty-six (31.3%) of the 83 CMR samples showed evidence of the presence of MAP. Seventeen (20.5%) tested positive for viable MAP by the PMS-phage assay, with plaque counts ranging from 6 to 1,212 pfu/50 mL of reconstituted CMR (average 248.5 pfu/50 mL). Twelve (14.5%) CMR samples tested positive for viable MAP by PMS-culture; isolates from all 12 of these samples were subsequently confirmed by whole-genome sequencing to be different cattle strains of MAP. Seven (8.4%) CMR samples tested positive for MAP DNA by IS900 qPCR. Four CMR samples tested positive by both PMS-based tests and 5 CMR samples tested positive by IS900 qPCR plus one or other of the PMS-based tests, but only one CMR sample tested positive by all 3 MAP detection tests applied. All conventional microbiology results were within current standards for whole milk powders. A significant association existed between higher total bacterial counts and presence of viable MAP indicated by either of the PMS-based assays. This represents the first published report of the isolation of viable MAP from CMR. Our findings raise concerns about the potential ability of MAP to survive manufacture of dried milk-based products.


Asunto(s)
Alimentación Animal/microbiología , Enfermedades de los Bovinos/epidemiología , ADN Bacteriano/análisis , Industria Lechera/métodos , Mycobacterium avium subsp. paratuberculosis/aislamiento & purificación , Paratuberculosis/epidemiología , Reacción en Cadena de la Polimerasa/métodos , Animales , Bovinos , Enfermedades de los Bovinos/microbiología , Dieta/veterinaria , Higiene , Paratuberculosis/microbiología , Wisconsin/epidemiología
3.
Microorganisms ; 11(8)2023 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-37630665

RESUMEN

Mycobacterium tuberculosis (M. tuberculosis) remains a significant global health threat, accounting for ~1.7 million deaths annually. The efficacy of the current vaccine, M. bovis BCG, ranges from 0 to 80% in children and does not prevent adulthood tuberculosis. We explored the immune profile and safety of a live-attenuated M. tuberculosis construct with double deletions of the mosR and echA7 genes, where previously, single mutations were protective against an M. tuberculosis aerosol challenge. Over 32 weeks post-vaccination (WPV), immunized mice with M. tuberculosisΔmosRΔechA7 (double mutant) were sacrificed to evaluate the vaccine persistence, histopathology, and immune responses. Interestingly, despite similar tissue colonization between the vaccine double mutant and wild-type M. tuberculosis, the vaccine construct showed a greater reaction to the ESAT-6, TB.10, and Ag85B antigens with peptide stimulation. Additionally, there was a greater number of antigen-specific CD4 T cells in the vaccine group, accompanied by significant polyfunctional T-cell responses not observed in the other groups. Histologically, mild but widely distributed inflammatory responses were recorded in the livers and lungs of the immunized animals at early timepoints, which turned into organized inflammatory foci via 32WPV, a pathology not observed in BCG-immunized mice. A lower double-mutant dose resulted in significantly less tissue colonization and less tissue inflammation. Overall, the double-mutant vaccine elicited robust immune responses dominated by antigen-specific CD4 T cells, but also triggered tissue damage and vaccine persistence. The findings highlight key features associated with the immunogenicity and safety of the examined vaccine construct that can benefit the future evaluation of other live vaccines.

4.
Front Vet Sci ; 9: 1046704, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36699320

RESUMEN

Mycobacterium avium subspecies paratuberculosis (M. paratuberculosis) is the causative agent of Johne's disease, a chronic debilitating condition affecting ruminants causing significant economic losses to the dairy industry. Available inactivated vaccines are not effective in controlling the disease and vaccinated animals can continue to infect newly born calves. Recently, we have shown that a live-attenuated vaccine candidate (pgsN) is protective in goats and calves following challenge with virulent strains of M. paratuberculosis. To decipher the dynamics of the immune responses elicited by both live-attenuated and inactivated vaccines, we analyzed key immunological parameters of goats immunized through different routes when a marker-less pgsN vaccine was used. Within a few weeks, the inactivated vaccine triggered the formation of granulomas both at the site of inoculation and in regional lymph nodes, that increased in size over time and persisted until the end of the experiment. In contrast, granulomas induced by the pgsN vaccine were small and subsided during the study. Interestingly, in this vaccine group, histology demonstrated an initial abundance of intra-histiocytic mycobacterial bacilli at the site of inoculation, with recruitment of very minimal T lymphocytes to poorly organized granulomas. Over time, granulomas became more organized, with recruitment of greater numbers of T and B lymphocytes, which coincided with a lack of mycobacteria. For the inactivated vaccine group, mycobacterial bacilli were identified extracellularly within the center of caseating granulomas, with relatively equal proportions of B- and T-lymphocytes maintained across both early and late times. Despite the differences in granuloma-specific lymphocyte recruitment, markers for cell-mediated immunity (e.g., IFN-γ release) were robust in both injected pgsN and inactivated vaccine groups. In contrast, the intranasal live-attenuated vaccine did not elicit any reaction at site of inoculation, nor cell-mediated immune responses. Finally, 80% of animals in the inactivated vaccine group significantly reacted to purified protein derivatives from M. bovis, while reactivity was detected in only 20% of animals receiving pgsN vaccine, suggesting a higher level of cross reactivity for bovine tuberculosis when inactivated vaccine is used. Overall, these results depict the cellular recruitment strategies driving immune responses elicited by both live-attenuated and inactivated vaccines that target Johne's disease.

5.
Vaccines (Basel) ; 9(2)2021 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-33562141

RESUMEN

The rapid transmission of SARS-CoV-2 in the USA and worldwide necessitates the development of multiple vaccines to combat the COVID-19 global pandemic. Previously, we showed that a particulate adjuvant system, quil-A-loaded chitosan (QAC) nanoparticles, can elicit robust immunity combined with plasmid vaccines when used against avian coronavirus. Here, we report on the immune responses elicited by mucosal homologous plasmid and a heterologous immunization strategy using a plasmid vaccine and a Modified Vaccinia Ankara (MVA) expressing SARS-CoV-2 spike (S) and nucleocapsid (N) antigens. Only the heterologous intranasal immunization strategy elicited neutralizing antibodies against SARS-CoV-2 in serum and bronchoalveolar lavage of mice, suggesting a protective vaccine. The same prime/boost strategy led to the induction of type 1 and type 17 T-cell responses and polyfunctional T-cells expressing multiple type 1 cytokines (e.g., IFN-γ, TNFα, IL-2) in the lungs and spleens of vaccinated mice. In contrast, the plasmid homologous vaccine strategy led to the induction of local mono and polyfunctional T-cells secreting IFN-γ. Outcomes of this study support the potential of QAC-nano vaccines to elicit significant mucosal immune responses against respiratory coronaviruses.

6.
Microorganisms ; 8(9)2020 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-32957508

RESUMEN

Johne's disease (JD) caused by Mycobacterium avium subsp. paratuberculosis (M. paratuberculosis) is a chronic infection characterized by the development of granulomatous enteritis in wild and domesticated ruminants. It is one of the most significant livestock diseases not only in the USA but also globally, accounting for USD 200-500 million losses annually for the USA alone with potential link to cases of Crohn's disease in humans. Developing safe and protective vaccines is of a paramount importance for JD control in dairy cows. The current study evaluated the safety, immunity and protective efficacy of a novel live attenuated vaccine (LAV) candidate with and without an adjuvant in comparison to an inactivated vaccine. Results indicated that the LAV, irrespective of the adjuvant presence, induced robust T cell immune responses indicated by proinflammatory cytokine production such as IFN-γ, IFN-α, TNF-α and IL-17 as well as strong response to intradermal skin test against M. paratuberculosis antigens. Furthermore, the LAV was safe with minimal tissue pathology. Finally, calves vaccinated with adjuvanted LAV did not shed M. paratuberculosis post-challenge, a much-desired characteristic of an effective vaccine against JD. Together, this data suggests a strong potential of testing LAV in field trials to curb JD in dairy herds.

7.
NPJ Vaccines ; 5(1): 15, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32128256

RESUMEN

Mycobacterium avium subsp. paratuberculosis (M. paratuberculosis) causes Johne's disease in ruminants and is characterized by chronic gastroenteritis leading to heavy economic losses to the dairy industry worldwide. The currently available vaccine (inactivated bacterin in oil base) is not effective in preventing pathogen shedding and is rarely used to control Johne's disease in dairy herds. To develop a better vaccine that can prevent the spread of Johne's disease, we utilized polyanhydride nanoparticles (PAN) to encapsulate mycobacterial antigens composed of whole cell lysate (PAN-Lysate) and culture filtrate (PAN-Cf) of M. paratuberculosis. These nanoparticle-based vaccines (i.e., nanovaccines) were well tolerated in mice causing no inflammatory lesions at the site of injection. Immunological assays demonstrated a substantial increase in the levels of antigen-specific T cell responses post-vaccination in the PAN-Cf vaccinated group as indicated by high percentages of triple cytokine (IFN-γ, IL-2, TNF-α) producing CD8+ T cells. Following challenge, animals vaccinated with PAN-Cf continued to produce significant levels of double (IFN-γ, TNF-α) and single cytokine (IFN-γ) secreting CD8+ T cells compared with animals vaccinated with an inactivated vaccine. A significant reduction in bacterial load was observed in multiple organs of animals vaccinated with PAN-Cf, which is a clear indication of protection. Overall, the use of polyanhydride nanovaccines resulted in development of protective and sustained immunity against Johne's disease, an approach that could be applied to counter other intracellular pathogens.

9.
Sci Rep ; 9(1): 4474, 2019 03 14.
Artículo en Inglés | MEDLINE | ID: mdl-30872748

RESUMEN

Tuberculosis (TB) represents a significant challenge to public health authorities, especially with the emergence of drug-resistant (DR) and multidrug-resistant (MDR) isolates of Mycobacterium tuberculosis. We sought to examine the genomic variations among recently isolated strains of M. tuberculosis in two closely related countries with different population demography in the Middle East. Clinical isolates of M. tuberculosis from both Egypt and Saudi Arabia were subjected to phenotypic and genotypic analysis on gene and genome-wide levels. Isolates with MDR phenotypes were highly prevalent in Egypt (up to 35%) despite its relatively stable population structure (sympatric pattern). MDR-TB isolates were not identified in the isolates from Saudi Arabia despite its active guest worker program (allopatric pattern). However, tuberculosis isolates from Saudi Arabia, where lineage 4 was more prevalent (>65%), showed more diversity than isolates from Egypt, where lineage 3 was the most prevalent (>75%). Phylogenetic and molecular dating analyses indicated that lineages from Egypt were recently diverged (~78 years), whereas those from Saudi Arabia were diverged by over 200 years. Interestingly, DR isolates did not appear to cluster together or spread more widely than drug-sensitive isolates, suggesting poor treatment as the main cause for emergence of drug resistance rather than more virulence or more capacity to persist.


Asunto(s)
Farmacorresistencia Bacteriana , Mycobacterium tuberculosis/clasificación , Tuberculosis Resistente a Múltiples Medicamentos/epidemiología , Secuenciación Completa del Genoma/métodos , Adolescente , Adulto , Anciano , Niño , Preescolar , Egipto/epidemiología , Femenino , Humanos , Lactante , Masculino , Persona de Mediana Edad , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/aislamiento & purificación , Filogenia , Prevalencia , Arabia Saudita/epidemiología , Tuberculosis Resistente a Múltiples Medicamentos/microbiología , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA