RESUMEN
Messenger RNA (mRNA) vaccines represent a new class of vaccines that has been shown to be highly effective during the COVID-19 pandemic and that holds great potential for other preventative and therapeutic applications. While it is known that the transcriptional activity of various genes is altered following mRNA vaccination, identifying and studying gene networks could reveal important scientific insights that might inform future vaccine designs. In this study, we conducted an in-depth weighted gene correlation network analysis of the blood transcriptome before and 24 h after the second and third vaccination with licensed mRNA vaccines against COVID-19 in humans, following a prime vaccination with either mRNA or ChAdOx1 vaccines. Utilizing this unsupervised gene network analysis approach, we identified distinct modular networks of co-varying genes characterized by either an expressional up- or downregulation in response to vaccination. Downregulated networks were associated with cell metabolic processes and regulation of transcription factors, while upregulated networks were associated with myeloid differentiation, antigen presentation, and antiviral, interferon-driven pathways. Within this interferon-associated network, we identified highly connected hub genes such as STAT2 and RIGI and associated upstream transcription factors, potentially playing important regulatory roles in the vaccine-induced immune response. The expression profile of this network significantly correlated with S1-specific IgG levels at the follow-up visit in vaccinated individuals. Those findings could be corroborated in a second, independent cohort of mRNA vaccine recipients. Collectively, results from this modular gene network analysis enhance the understanding of mRNA vaccines from a systems immunology perspective. Influencing specific gene networks could lead to optimized vaccines that elicit augmented vaccine responses.
RESUMEN
Rationale: The strongest genetic risk factor for childhood-onset asthma, the 17q21 locus, is associated with increased viral susceptibility and disease-promoting processes.Objectives: To identify biological targets underlying the escalated viral susceptibility associated with the clinical phenotype mediated by the 17q21 locus.Methods: Genome-wide transcriptome analysis of nasal brush samples from 261 children (78 healthy, 79 with wheezing at preschool age, 104 asthmatic) within the ALLIANCE (All-Age-Asthma) cohort, with a median age of 10.0 (range, 1.0-20.0) years, was conducted to explore the impact of their 17q21 genotype (SNP rs72163891). Concurrently, nasal secretions from the same patients and visits were collected, and high-sensitivity mesoscale technology was employed to measure IFN protein levels.Measurements and Main Results: This study revealed that the 17q21 risk allele induces a genotype- and asthma/wheeze phenotype-dependent enhancement of mucosal GSDMB expression as the only relevant 17q21-encoded gene in children with preschool wheeze. Increased GSDMB expression correlated with the activation of a type-1 proinflammatory, cell-lytic immune, and natural killer signature, encompassing key genes linked to an IFN type-2-signature (IFNG, CXCL9, CXCL10, KLRC1, CD8A, GZMA). Conversely, there was a reduction in IFN type 1 and type 3 expression signatures at the mRNA and protein levels.Conclusions: This study demonstrates a novel disease-driving mechanism induced by the 17q21 risk allele. Increased mucosal GSDMB expression is associated with a cell-lytic immune response coupled with compromised airway immunocompetence. These findings suggest that GSDMB-related airway cell death and perturbations in the mucosal IFN signature account for the increased vulnerability of 17q21 risk allele carriers to respiratory viral infections during early life, opening new options for future biological interventions.The All-Age-Asthma (ALLIANCE) cohort is registered at www.clinicaltrials.gov (pediatric arm, NCT02496468).
Asunto(s)
Asma , Preescolar , Niño , Humanos , Lactante , Adolescente , Adulto Joven , Adulto , Anciano de 80 o más Años , Genotipo , Fenotipo , Alelos , ARN Mensajero , Predisposición Genética a la Enfermedad/genética , Polimorfismo de Nucleótido Simple/genéticaRESUMEN
BACKGROUND: We recently demonstrated that elexacaftor/tezacaftor/ivacaftor (ETI) improves the lung clearance index (LCI) and abnormalities in lung morphology detected by magnetic resonance imaging (MRI) in adolescent and adult patients with cystic fibrosis (CF). However, real-world data on the effect of ETI on these sensitive outcomes of lung structure and function in school-age children with CF have not been reported. The aim of this study was therefore to examine the effect of ETI on the LCI and the lung MRI score in children aged 6-11â years with CF and one or two F508del alleles. METHODS: This prospective, observational, multicentre, post-approval study assessed the longitudinal LCI up to 12â months and the lung MRI score before and 3â months after initiation of ETI. RESULTS: A total of 107 children with CF including 40 heterozygous for F508del and a minimal function mutation (F/MF) and 67 homozygous for F508del (F/F) were enrolled in this study. Treatment with ETI improved the median (interquartile range (IQR)) LCI in F/MF (-1.0 (-2.0- -0.1); p<0.01) and F/F children (-0.8 (-1.9- -0.2); p<0.001) from 3â months onwards. Further, ETI improved the median (IQR) MRI global score in F/MF (-4.0 (-9.0-0.0); p<0.01) and F/F children (-3.5 (-7.3- -0.8); p<0.001). CONCLUSIONS: ETI improves early abnormalities in lung ventilation and morphology in school-age children with CF and at least one F508del allele in a real-world setting. Our results support early initiation of ETI to reduce or even prevent lung disease progression in school-age children with CF.
Asunto(s)
Alelos , Aminofenoles , Benzodioxoles , Regulador de Conductancia de Transmembrana de Fibrosis Quística , Fibrosis Quística , Indoles , Pulmón , Imagen por Resonancia Magnética , Pirazoles , Quinolonas , Humanos , Niño , Fibrosis Quística/tratamiento farmacológico , Fibrosis Quística/genética , Fibrosis Quística/diagnóstico por imagen , Femenino , Masculino , Aminofenoles/uso terapéutico , Quinolonas/uso terapéutico , Estudios Prospectivos , Indoles/uso terapéutico , Benzodioxoles/uso terapéutico , Pulmón/diagnóstico por imagen , Pulmón/efectos de los fármacos , Pulmón/fisiopatología , Pirazoles/uso terapéutico , Regulador de Conductancia de Transmembrana de Fibrosis Quística/genética , Combinación de Medicamentos , Mutación , Piridinas/uso terapéutico , Pirrolidinas/uso terapéutico , HomocigotoRESUMEN
BACKGROUND: Numerous children present with early wheeze symptoms, yet solely a subgroup develops childhood asthma. Early identification of children at risk is key for clinical monitoring, timely patient-tailored treatment, and preventing chronic, severe sequelae. For early prediction of childhood asthma, we aimed to define an integrated risk score combining established risk factors with genome-wide molecular markers at birth, complemented by subsequent clinical symptoms/diagnoses (wheezing, atopic dermatitis, food allergy). METHODS: Three longitudinal birth cohorts (PAULINA/PAULCHEN, n = 190 + 93 = 283, PASTURE, n = 1133) were used to predict childhood asthma (age 5-11) including epidemiological characteristics and molecular markers: genotype, DNA methylation and mRNA expression (RNASeq/NanoString). Apparent (ap) and optimism-corrected (oc) performance (AUC/R2) was assessed leveraging evidence from independent studies (Naïve-Bayes approach) combined with high-dimensional logistic regression models (LASSO). RESULTS: Asthma prediction with epidemiological characteristics at birth (maternal asthma, sex, farm environment) yielded an ocAUC = 0.65. Inclusion of molecular markers as predictors resulted in an improvement in apparent prediction performance, however, for optimism-corrected performance only a moderate increase was observed (upto ocAUC = 0.68). The greatest discriminate power was reached by adding the first symptoms/diagnosis (up to ocAUC = 0.76; increase of 0.08, p = .002). Longitudinal analysis of selected mRNA expression in PASTURE (cord blood, 1, 4.5, 6 years) showed that expression at age six had the strongest association with asthma and correlation of genes getting larger over time (r = .59, p < .001, 4.5-6 years). CONCLUSION: Applying epidemiological predictors alone showed moderate predictive abilities. Molecular markers from birth modestly improved prediction. Allergic symptoms/diagnoses enhanced the power of prediction, which is important for clinical practice and for the design of future studies with molecular markers.
Asunto(s)
Asma , Humanos , Asma/epidemiología , Asma/genética , Asma/diagnóstico , Femenino , Masculino , Niño , Preescolar , Factores de Riesgo , Estudios Longitudinales , Metilación de ADN , Biomarcadores , Cohorte de NacimientoRESUMEN
INTRODUCTION: Eosinophil-derived neurotoxin (EDN) is a biomarker for eosinophilic activation. Urinary (u) EDN may allow non-invasive monitoring of asthma, but clinical recommendations are lacking. We assessed the potential of uEDN as a marker of disease activity in pediatric asthma. METHODS: We assessed urine samples of 371 children from the German ALLIANCE study cohort, from which we had: 169 preschool wheezers (<6 years), 80 asthmatics (≥6 years), and 122 healthy controls using the ImmunoCAP™ EDN Assay. Creatinine (Cr)-adjusted uEDN values were analyzed using correlations, association tests, (non) parametric statistics, multiple linear, and multivariable regression. RESULTS: uEDN/uCr values were higher in atopic versus non-atopic preschool-aged subjects (p = .035) and associated with the sum of allergen-specific IgE in younger (r = 0.24, p = .003), and older subjects (r = 0.23, p = .043). uEDN/uCr was marginally a good determinant for atopy (p = .078, for subjects aged <6 years, and p = .058 for subjects ≥6 years). Children with the T2-high phenotype had higher uEDN/uCr (p < .001) versus T2-low-irrespective of using uEDN/uCr or blood eosinophils in combination to allergen sIgE for disease phenotyping. uEDN/uCr significantly correlated with reduced lung function among asthmatics (FEV1 z-scores: r = -0.30, p = .007, and FEV1/FVC z-scores: r = -0.24, p = .038). Using multivariable modeling, uEDN/uCr was an independent determinant of FEV1 (p = .038), and to a lesser extent, FEV1/FVC (p = .080). CONCLUSIONS: uEDN/uCr may serve as a non-invasive biomarker for clinical features such as lung function in pediatric asthma. We highlight the utility of uEDN/uCr as a biomarker that can be easily assessed using widely available robust diagnostic immunoassays.
Asunto(s)
Asma , Biomarcadores , Neurotoxina Derivada del Eosinófilo , Adolescente , Niño , Preescolar , Femenino , Humanos , Masculino , Asma/orina , Biomarcadores/orina , Neurotoxina Derivada del Eosinófilo/orina , Eosinófilos/inmunología , Inmunoglobulina E/sangre , Pulmón/patología , Pruebas de Función RespiratoriaRESUMEN
OBJECTIVES: To investigate whether 3D phase-resolved functional lung (PREFUL)-MRI parameters are suitable to measure response to elexacaftor/tezacaftor/ivacaftor (ETI) therapy and their association with clinical outcomes in cystic fibrosis (CF) patients. METHODS: Twenty-three patients with CF (mean age: 21; age range: 14-46) underwent MRI examination at baseline and 8-16 weeks after initiation of ETI. Morphological and 3D PREFUL scans assessed pulmonary ventilation. Morphological images were evaluated using a semi-quantitative scoring system, and 3D PREFUL scans were evaluated by ventilation defect percentage (VDP) values derived from regional ventilation (RVent) and cross-correlation maps. Improved ventilation volume (IVV) normalized to body surface area (BSA) between baseline and post-treatment visit was computed. Forced expiratory volume in 1 second (FEV1) and mid-expiratory flow at 25% of forced vital capacity (MEF25), as well as lung clearance index (LCI), were assessed. Treatment effects were analyzed using paired Wilcoxon signed-rank tests. Treatment changes and post-treatment agreement between 3D PREFUL and clinical parameters were evaluated by Spearman's correlation. RESULTS: After ETI therapy, all 3D PREFUL ventilation markers (all p < 0.0056) improved significantly, except for the mean RVent parameter. The BSA normalized IVVRVent was significantly correlated to relative treatment changes of MEF25 and mucus plugging score (all |r| > 0.48, all p < 0.0219). In post-treatment analyses, 3D PREFUL VDP values significantly correlated with spirometry, LCI, MRI global, morphology, and perfusion scores (all |r| > 0.44, all p < 0.0348). CONCLUSIONS: 3D PREFUL MRI is a very promising tool to monitor CFTR modulator-induced regional dynamic ventilation changes in CF patients. CLINICAL RELEVANCE STATEMENT: 3D PREFUL MRI is sensitive to monitor CFTR modulator-induced regional ventilation changes in CF patients. Improved ventilation volume correlates with the relative change of mucus plugging, suggesting that reduced endobronchial mucus is predominantly responsible for regional ventilation improvement. KEY POINTS: ⢠3D PREFUL MRI-derived ventilation maps show significantly reduced ventilation defects in CF patients after ETI therapy. ⢠Significant post-treatment correlations of 3D PREFUL ventilation measures especially with LCI, FEV1 %pred, and global MRI score suggest that 3D PREFUL MRI is sensitive to measure improved regional ventilation of the lung parenchyma due to reduced inflammation induced by ETI therapy in CF patients. ⢠3D PREFUL MRI-derived improved ventilation volume (IVV) correlated with MRI mucus plugging score changes suggesting that reduced endobronchial mucus is predominantly responsible for regional ventilation improvement 8-16 weeks after ETI therapy.
Asunto(s)
Aminofenoles , Benzodioxoles , Fibrosis Quística , Indoles , Pirazoles , Piridinas , Pirrolidinas , Quinolonas , Humanos , Adolescente , Adulto Joven , Adulto , Persona de Mediana Edad , Fibrosis Quística/diagnóstico por imagen , Fibrosis Quística/tratamiento farmacológico , Regulador de Conductancia de Transmembrana de Fibrosis Quística/genética , Regulador de Conductancia de Transmembrana de Fibrosis Quística/uso terapéutico , Pulmón/diagnóstico por imagen , Ventilación Pulmonar , Imagen por Resonancia Magnética/métodos , MutaciónRESUMEN
Pulmonary alveolar proteinosis (PAP) is an umbrella term used to refer to a pulmonary syndrome which is characterized by excessive accumulation of surfactant in the lungs of affected individuals. In general, PAP is a rare lung disease affecting children and adults, although its prevalence and incidence is variable among different countries. Even though PAP is a rare disease, it is a prime example on how modern medicine can lead to new therapeutic concepts, changing ways and techniques of (genetic) diagnosis which ultimately led into personalized treatments, all dedicated to improve the function of the impaired lung and thus life expectancy and quality of life in PAP patients. In fact, new technologies, such as new sequencing technologies, gene therapy approaches, new kind and sources of stem cells and completely new insights into the ontogeny of immune cells such as macrophages have increased our understanding in the onset and progression of PAP, which have paved the way for novel therapeutic concepts for PAP and beyond. As of today, classical monocyte-derived macrophages are known as important immune mediator and immune sentinels within the innate immunity. Furthermore, macrophages (known as tissue resident macrophages (TRMs)) can also be found in various tissues, introducing e. g. alveolar macrophages in the broncho-alveolar space as crucial cellular determinants in the onset of PAP and other lung disorders. Given recent insights into the onset of alveolar macrophages and knowledge about factors which impede their function, has led to the development of new therapies, which are applied in the context of PAP, with promising implications also for other diseases in which macrophages play an important role. Thus, we here summarize the latest insights into the various forms of PAP and introduce new pre-clinical work which is currently conducted in the framework of PAP, introducing new therapies for children and adults who still suffer from this severe, potentially life-threatening disease.
Asunto(s)
Proteinosis Alveolar Pulmonar , Adulto , Niño , Humanos , Proteinosis Alveolar Pulmonar/diagnóstico , Proteinosis Alveolar Pulmonar/genética , Proteinosis Alveolar Pulmonar/terapia , Calidad de Vida , Pulmón , Macrófagos AlveolaresRESUMEN
Human respiratory syncytial virus (RSV) is the leading cause of acute lower respiratory infection in children under 5 y of age. In the absence of a safe and effective vaccine and with limited options for therapeutic interventions, uncontrolled epidemics of RSV occur annually worldwide. Existing RSV reverse genetics systems have been predominantly based on older laboratory-adapted strains such as A2 or Long. These strains are not representative of currently circulating genotypes and have a convoluted passage history, complicating their use in studies on molecular determinants of viral pathogenesis and intervention strategies. In this study, we have generated reverse genetics systems for clinical isolates of RSV-A (ON1, 0594 strain) and RSV-B (BA9, 9671 strain) in which the full-length complementary DNA (cDNA) copy of the viral antigenome is cloned into a bacterial artificial chromosome (BAC). Additional recombinant (r) RSVs were rescued expressing enhanced green fluorescent protein (EGFP), mScarlet, or NanoLuc luciferase from an additional transcription unit inserted between the P and M genes. Mutations in antigenic site II of the F protein conferring escape from palivizumab neutralization (K272E, K272Q, S275L) were investigated using quantitative cell-fusion assays and rRSVs via the use of BAC recombineering protocols. These mutations enabled RSV-A and -B to escape palivizumab neutralization but had differential impacts on cell-to-cell fusion, as the S275L mutation resulted in an almost-complete ablation of syncytium formation. These reverse genetics systems will facilitate future cross-validation efficacy studies of novel RSV therapeutic intervention strategies and investigations into viral and host factors necessary for virus entry and cell-to-cell spread.
Asunto(s)
Farmacorresistencia Viral/genética , Mutación , Virus Sincitiales Respiratorios/genética , Animales , Antivirales/toxicidad , Chlorocebus aethiops , Farmacorresistencia Viral/inmunología , Células Hep G2 , Humanos , Palivizumab/toxicidad , Infecciones por Virus Sincitial Respiratorio/tratamiento farmacológico , Infecciones por Virus Sincitial Respiratorio/virología , Virus Sincitiales Respiratorios/inmunología , Virus Sincitiales Respiratorios/aislamiento & purificación , Virus Sincitiales Respiratorios/patogenicidad , Genética Inversa/métodos , Células VeroRESUMEN
BACKGROUND: The Asthma Severity Scoring System (ASSESS) quantifies asthma severity in adolescents and adults. Scale performance in children younger than 12 years is unknown. OBJECTIVE: To validate the ASSESS score in the All Age Asthma Cohort and explore its use in children younger than 12 years. METHODS: Scale properties, responsiveness, and known-group validity were assessed in 247 children (median age, 11 years; interquartile range, 8-13 years) and 206 adults (median age, 52 years; interquartile range, 43-63 years). RESULTS: Overall, measures of internal test consistency and test-retest reliability were similar to the original data of the Severe Asthma Research Program. Cronbach α was 0.59 in children aged 12 to 18 years and 0.73 in adults, reflecting the inclusion of multiple and not-always congruent dimensions to the ASSESS score, especially in children. Analysis of known-group validity confirmed the discriminatory power, because the ASSESS score was significantly worse in patients with poor asthma control, exacerbations, and increased salbutamol use. In children aged 6 to 11 years, test-retest reliability was inferior compared with that in adults and adolescents (Cronbach α, 0.27) mostly because of a less lung function impairment in children with asthma of this age group. Known-group validity, however, confirmed good discriminative power regarding severity-associated variables similar to adolescents and adults. CONCLUSIONS: Test-retest reliability and validity of the ASSESS score was confirmed in the All Age Asthma Cohort. In children aged 6 to 11 years, internal consistency was inferior compared with that in older patients with asthma; however, test validity was good and thus encourages age-spanning usage of the ASSESS score in all patients 6 years or older.
Asunto(s)
Asma , Niño , Adulto , Adolescente , Humanos , Anciano , Persona de Mediana Edad , Reproducibilidad de los Resultados , Encuestas y Cuestionarios , Asma/diagnósticoRESUMEN
BACKGROUND: Impulse oscillometry (IOS) allows an effort-independent evaluation of small airway function in asthma. Unfortunately, well-determined minimal clinically important differences (MCIDs) for IOS measures are lacking. Here, we provide MCIDs for frequently used IOS measures, namely frequency dependence of resistance (FDR) and area of reactance (AX), in patients with asthma. METHODS: We performed IOS at baseline and 1â year later in adult patients with mild-to-severe asthma (n=235). In a two-step approach, we first applied a distribution-based method to statistically determine the MCID. Next, we validated the proposed MCID according to patient-reported outcome measures (PROMs): Asthma Quality of Life Questionnaire (AQLQ), Asthma Control Questionnaire-7 (ACQ-7) and Asthma Control Test (ACT). We used multivariable analyses to investigate the proposed MCIDs as predictors for improvements in PROMs compared with the established MCID of forced expiratory volume in 1â s (FEV1). RESULTS: The proposed MCID was a decline of ≥0.06â kPa·L-1·s-1 and ≥0.65â kPa·L-1 for FDR and AX, respectively. Patients who had changes beyond the MCIDs for both FDR and AX showed greater improvements in all PROMs than those who had not. The mean improvements in PROMs were beyond the established MCIDs for ACQ-7 and AQLQ, and approximated the MCID for ACT. Multivariable analyses demonstrated the MCIDs for both FDR and AX as independent predictors for the MCIDs of all PROMs. The MCID for FDR was a stronger predictor of all PROMs than the MCID for FEV1. CONCLUSIONS: This study provides MCIDs for IOS-derived measures in adult patients with asthma and emphasises that small airway function is a distinguished end-point beyond the conventional measure of FEV1.
Asunto(s)
Asma , Diferencia Mínima Clínicamente Importante , Humanos , Adulto , Oscilometría/métodos , Calidad de Vida , Asma/diagnóstico , Pruebas de Función RespiratoriaRESUMEN
PURPOSE: SARS-CoV-2 infections cause COVID-19 and have a wide spectrum of morbidity. Severe disease courses among children are rare. To date, data on the variability of morbidity in relation to variant of concern (VOC) in children has been sparse and inconclusive. We compare the clinical severity of SARS-CoV-2 infection among children and adolescents in Germany during the Wildtype and Alpha combined, Delta and Omicron phases of the COVID-19 pandemic. METHODS: Comparing risk of COVID-19-related hospitalization, intensive care unit (ICU) admission and death due to COVID-19 in children and adolescents, we used: (1) a multi-center seroprevalence study (SARS-CoV-2-KIDS study); (2) a nationwide registry of pediatric patients hospitalized with SARS-CoV-2 infections; and (3) compulsory national reporting for RT-PCR-confirmed SARS-CoV-2 infections in Germany. RESULTS: During the Delta predominant phase, risk of COVID-19-related hospitalization among all SARS-CoV-2 seropositive children was 3.35, ICU admission 1.19 and fatality 0.09 per 10,000; hence about halved for hospitalization and ICU admission and unchanged for deaths as compared to the Wildtype- and Alpha-dominant period. The relative risk for COVID-19-related hospitalization and ICU admission compared to the alpha period decreased during Delta [0.60 (95% CI 0.54; 0.67) and 0.51 (95% CI 0.42; 0.61)] and Omicron [0.27 (95% CI 0.24; 0.30) and 0.06 (95% CI 0.05; 0.08)] period except for the < 5-year-olds. The rate of case fatalities decreased slightly during Delta, and substantially during Omicron phase. CONCLUSION: Morbidity caused by SARS-CoV-2 infections among children and adolescents in Germany decreased over the course of the COVID-19 pandemic, as different VOCs) emerged.
Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , Adolescente , Niño , Preescolar , COVID-19/epidemiología , Riesgo , Pandemias , Estudios Seroepidemiológicos , Hospitalización , Alemania/epidemiología , Unidades de Cuidados IntensivosRESUMEN
Rationale: We recently demonstrated that triple-combination CFTR (cystic fibrosis transmembrane conductance regulator) modulator therapy with elexacaftor/tezacaftor/ivacaftor (ELX/TEZ/IVA) improves CFTR function in airway and intestinal epithelia to 40-50% of normal in patients with cystic fibrosis (CF) with one or two F508del alleles. In previous studies, this improvement of CFTR function was shown to improve clinical outcomes; however, effects on the lung clearance index (LCI) determined by multiple-breath washout and abnormalities in lung morphology and perfusion detected by magnetic resonance imaging (MRI) have not been studied. Objectives: To examine the effect of ELX/TEZ/IVA on LCI and lung MRI scores in patients with CF and one or two F508del alleles aged ⩾12 years. Methods: This prospective, observational, multicenter, postapproval study assessed LCI and lung MRI scores before and 8-16 weeks after initiation of ELX/TEZ/IVA. Measurements and Main Results: A total of 91 patients with CF, including 45 heterozygous for F508del and a minimal function mutation (MF) and 46 homozygous for F508del, were enrolled in this study. Treatment with ELX/TEZ/IVA improved LCI in F508del/MF (-2.4; interquartile range [IQR], -3.7 to -1.1; P < 0.001) and F508del homozygous (-1.4; IQR, -2.4 to -0.4; P < 0.001) patients. Furthermore, ELX/TEZ/IVA improved the MRI global score in F508del/MF (-6.0; IQR, -11.0 to -1.3; P < 0.001) and F508del homozygous (-6.5; IQR, -11.0 to -1.3; P < 0.001) patients. Conclusions: Our data demonstrate that improvement of CFTR function by ELX/TEZ/IVA improves lung ventilation and abnormalities in lung morphology, including airway mucus plugging and wall thickening, in adolescent and adult patients with CF and one or two F508del alleles in a real-world, postapproval setting. Clinical trial registered with www.clinicaltrials.gov (NCT04732910).
Asunto(s)
Regulador de Conductancia de Transmembrana de Fibrosis Quística , Fibrosis Quística , Adolescente , Adulto , Anciano , Alelos , Aminofenoles/uso terapéutico , Benzodioxoles/uso terapéutico , Fibrosis Quística/diagnóstico por imagen , Fibrosis Quística/tratamiento farmacológico , Fibrosis Quística/genética , Regulador de Conductancia de Transmembrana de Fibrosis Quística/genética , Regulador de Conductancia de Transmembrana de Fibrosis Quística/uso terapéutico , Humanos , Indoles , Pulmón/diagnóstico por imagen , Imagen por Resonancia Magnética , Mutación , Estudios Prospectivos , Pirazoles , Piridinas , Pirrolidinas , QuinolonasRESUMEN
BACKGROUND: Pseudomonas aeruginosa (Pa) continues to affect disease progression in cystic fibrosis (CF). However, the best eradication regimen remains unclear. This work compares three different antibiotic eradication regimens in pediatric CF: an administration according to a standard-operating procedure (SOP) order vs. administration outside of this order (ooSOP). METHODS: This observational study includes all CF patients<18 years who received one of three Pa eradication treatments in the past eight years at our center: 1) inhaled high-dose tobramycin (Hi-TOBI), 2) inhaled colistin+oral ciprofloxacin (COL/Cip), 3) inhaled low-dose tobramycin+4 intravenous 14-day Pa active antibiotic treatments (lo-Tobra/IV). We compared eradication rates of the three treatment regimens performed according to the SOP-based order vs. ooSOP. Logistic regression analysis was performed to identify risk factors for eradication failure. RESULTS: Performed according to SOP order, Hi-TOBI showed the greatest efficacy, followed by lo-Tobra/IV and finally COL/Cip, while ooSOP lo-Tobra/IV was most successful, followed by COL/Cip and Hi-TOBI. Previous Pa-infections and Pa-therapies along with age at CF diagnosis were risk factors for eradication failure. CONCLUSION: Antibiotic treatment in SOP-based pre-defined order leads to significantly better eradication rates than individual modifications of the order of administration. A short course of inhalational high-dose Tobramycin is most successful at the first attempt. Prolonged antibiotic therapy seems to improve eradication after failed initial attempts.
Asunto(s)
Antibacterianos , Fibrosis Quística , Infecciones por Pseudomonas , Adolescente , Niño , Humanos , Administración por Inhalación , Antibacterianos/uso terapéutico , Protocolos Clínicos , Fibrosis Quística/tratamiento farmacológico , Fibrosis Quística/diagnóstico , Estudios Observacionales como Asunto , Pseudomonas aeruginosa , Infecciones por Pseudomonas/diagnóstico , Infecciones por Pseudomonas/tratamiento farmacológico , Tobramicina/uso terapéuticoRESUMEN
BACKGROUND: Nitrogen multiple breath washout (N2MBW) is a lung function test increasingly used in small airway diseases. Quality criteria have not yet been globally implemented and time-consuming retrospective overreading is necessary. Little data has been published on children with recurrent wheeze or asthma from multicentered studies. METHODS: Children with wheeze or asthma and healthy controls were included in the longitudinal All Age Asthma Cohort (ALLIANCE). To assess ventilation inhomogeneity, N2MBW tests were performed in five centers from 2013 until 2020. All N2MBW tests were centrally overread by one center. Multiple washout procedures (trials) at the visit concluded to one test occasion. Tests were accepted if trials were technically sound (started correctly, terminated correctly, no leak, regular breathing pattern) and repeatable within one test occasion. Signal misalignment was retrospectively corrected. Factors that may impact test quality were analyzed, such as experience level. RESULTS: N2MBW tests of n=561 participants were analyzed leading to n=949 (68.3%) valid tests of n=1,390 in total. Inter-center test acceptability ranged from 27.6% to 77.8%. End-of-test criterion and leak were identified to be the most common reasons for rejection. Data loss and uncorrectable signal misalignment led to rejection of 58% of trials in one center. In preschool children, significant improvement of test acceptability was found longitudinally (χ2(8)=18.6; p=0.02). CONCLUSION: N2MBW is feasible in a multicenter asthma study in children. However, the quality of this time-consuming procedure is dependent on experience level of staff in preschool children and still requires retrospective overreading for all age groups.
Asunto(s)
Asma , Nitrógeno , Preescolar , Humanos , Estudios Retrospectivos , Pruebas Respiratorias/métodos , Asma/diagnóstico , Pruebas de Función Respiratoria , Pulmón , Control de CalidadRESUMEN
BACKGROUND: A genetic defect in the epidermal barrier protein filaggrin (FLG) plays a major role in the etiology of eczema and associated allergic airways diseases. However, it is still controversial to what extend loss-of-function (LOF) mutations in FLG contribute to the development and persistence of food allergies. OBJECTIVES: This study tested association of FLG LOF mutations with allergic reactions to diverse foods and investigated their potential effect on the persistence of early food allergies. METHODS: This study recruited 890 children with challenge-proven food allergy for the German Genetics of Food Allergy Study (GOFA). Longitudinal data were available for 684 children. All children were clinically characterized, including their allergic responses to specific foods, and genotyped for the 4 most common LOF mutations in FLG; R501X, 2282del4, R2447X, and S3247X. Associations between FLG mutations and food allergies were analyzed by logistic regression using the German Multicenter Allergy Study cohort as the control population. RESULTS: FLG mutations were associated with allergies to diverse foods including hen's egg (HE), cow's milk (CM), peanut, hazelnut, fish, soy, cashew, walnut, and sesame with similar risk estimates. Effects remained significant after adjusting for the eczema status. Interestingly, FLG mutations increased the risk of a persistent course of HE and CM allergy. CONCLUSIONS: Using the gold standard for food allergy diagnosis, this study demonstrates that FLG LOF mutations confer a risk of any food allergy independent of eczema. These mutations predispose to the persistence of HE and CM allergy and should be considered in the assessment of tolerance development.
Asunto(s)
Eccema , Hipersensibilidad al Huevo , Hipersensibilidad a los Alimentos , Hipersensibilidad a la Leche , Bovinos , Femenino , Animales , Hipersensibilidad a la Leche/genética , Proteínas Filagrina , Pollos , Eccema/genética , Alérgenos , Hipersensibilidad a los Alimentos/genética , Mutación , Proteínas de Filamentos Intermediarios/genéticaRESUMEN
BACKGROUND: Comprehensive studies investigated the role of T-cells in asthma which led to personalised treatment options targeting severe eosinophilic asthma. However, little is known about the contribution of B-cells to this chronic inflammatory disease. In this study we investigated the contribution of various B-cell populations to specific clinical features in asthma. METHODS: In the All Age Asthma Cohort (ALLIANCE), a subgroup of 154 adult asthma patients and 28 healthy controls were included for B-cell characterisation by flow cytometry. Questionnaires, lung function measurements, blood differential counts and allergy testing of participants were analysed together with comprehensive data on B-cells using association studies and multivariate linear models. RESULTS: Patients with severe asthma showed decreased immature B-cell populations while memory B-cells were significantly increased compared with both mild-moderate asthma patients and healthy controls. Furthermore, increased frequencies of IgA+ memory B-cells were associated with impaired lung function and specifically with parameters indicative for augmented resistance in the peripheral airways. Accordingly, asthma patients with small airway dysfunction (SAD) defined by impulse oscillometry showed increased frequencies of IgA+ memory B-cells, particularly in patients with mild-moderate asthma. Additionally, IgA+ memory B-cells significantly correlated with clinical features of SAD such as exacerbations. CONCLUSIONS: With this study we demonstrate for the first time a significant association of increased IgA+ memory B-cells with asthma and SAD, pointing towards future options for B-cell-directed strategies in preventing and treating asthma.
Asunto(s)
Asma , Adulto , Humanos , Espirometría , Oscilometría , Sistema Respiratorio , Inmunoglobulina ARESUMEN
RATIONALE: In adults, personalised asthma treatment targets patients with type 2 (T2)-high and eosinophilic asthma phenotypes. It is unclear whether such classification is achievable in children. OBJECTIVES: To define T2-high asthma with easily accessible biomarkers and compare resulting phenotypes across all ages. METHODS: In the multicentre clinical All Age Asthma Cohort (ALLIANCE), 1125 participants (n=776 asthmatics, n=349 controls) were recruited and followed for 2â years (1â year in adults). Extensive clinical characterisation (questionnaires, blood differential count, allergy testing, lung function and sputum induction (in adults)) was performed at baseline and follow-ups. Interleukin (IL)-4, IL-5 and IL-13 were measured after stimulation of whole blood with lipopolysaccharide (LPS) or anti-CD3/CD28. MEASUREMENTS AND MAIN RESULTS: Based on blood eosinophil counts and allergen-specific serum IgE antibodies, patients were categorised into four mutually exclusive phenotypes: "atopy-only", "eosinophils-only", "T2-high" (eosinophilia + atopy) and "T2-low" (neither eosinophilia nor atopy). The T2-high phenotype was found across all ages, even in very young children in whom it persisted to a large degree even after 2â years of follow-up. T2-high asthma in adults was associated with childhood onset, suggesting early origins of this asthma phenotype. In both children and adults, the T2-high phenotype was characterised by excessive production of specific IgE to allergens (p<0.0001) and, from school age onwards, by increased production of IL-5 after anti-CD3/CD28 stimulation of whole blood. CONCLUSIONS: Using easily accessible biomarkers, patients with T2-high asthma can be identified across all ages delineating a distinct phenotype. These patients may benefit from therapy with biologicals even at a younger age.
Asunto(s)
Asma , Eosinofilia , Alérgenos , Biomarcadores , Antígenos CD28/genética , Eosinófilos , Humanos , Inmunoglobulina E , Interleucina-13 , Interleucina-5 , Lipopolisacáridos , Longevidad , FenotipoRESUMEN
BACKGROUND: Asthma exacerbations are a serious public health concern due to high healthcare resource utilization, work/school productivity loss, impact on quality of life, and risk of mortality. The genetic basis of asthma exacerbations has been studied in several populations, but no prior study has performed a multi-ancestry meta-analysis of genome-wide association studies (meta-GWAS) for this trait. We aimed to identify common genetic loci associated with asthma exacerbations across diverse populations and to assess their functional role in regulating DNA methylation and gene expression. METHODS: A meta-GWAS of asthma exacerbations in 4989 Europeans, 2181 Hispanics/Latinos, 1250 Singaporean Chinese, and 972 African Americans analyzed 9.6 million genetic variants. Suggestively associated variants (p ≤ 5 × 10-5 ) were assessed for replication in 36,477 European and 1078 non-European asthma patients. Functional effects on DNA methylation were assessed in 595 Hispanic/Latino and African American asthma patients and in publicly available databases. The effect on gene expression was evaluated in silico. RESULTS: One hundred and twenty-six independent variants were suggestively associated with asthma exacerbations in the discovery phase. Two variants independently replicated: rs12091010 located at vascular cell adhesion molecule-1/exostosin like glycosyltransferase-2 (VCAM1/EXTL2) (discovery: odds ratio (ORT allele ) = 0.82, p = 9.05 × 10-6 and replication: ORT allele = 0.89, p = 5.35 × 10-3 ) and rs943126 from pantothenate kinase 1 (PANK1) (discovery: ORC allele = 0.85, p = 3.10 × 10-5 and replication: ORC allele = 0.89, p = 1.30 × 10-2 ). Both variants regulate gene expression of genes where they locate and DNA methylation levels of nearby genes in whole blood. CONCLUSIONS: This multi-ancestry study revealed novel suggestive regulatory loci for asthma exacerbations located in genomic regions participating in inflammation and host defense.
Asunto(s)
Asma , Estudio de Asociación del Genoma Completo , Asma/genética , Predisposición Genética a la Enfermedad , Hispánicos o Latinos/genética , Humanos , Polimorfismo de Nucleótido Simple , Calidad de VidaRESUMEN
Cystic fibrosis is caused by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene, which lead to impaired ion transport in epithelial cells. Although lung failure due to chronic infection is the major comorbidity in individuals with cystic fibrosis, the role of CFTR in non-epithelial cells has not been definitively resolved. Given the important role of host defense cells, we evaluated the Cftr deficiency in pulmonary immune cells by hematopoietic stem cell transplantation in cystic fibrosis mice. We transplanted healthy bone marrow stem cells and could reveal a stable chimerism of wild-type cells in peripheral blood. The outcome of stem cell transplantation and the impact of healthy immune cells were evaluated in acute Pseudomonas aeruginosa airway infection. In this study, mice transplanted with wild-type cells displayed better survival, lower lung bacterial numbers, and a milder disease course. This improved physiology of infected mice correlated with successful intrapulmonary engraftment of graft-derived alveolar macrophages, as seen by immunofluorescence microscopy and flow cytometry of graft-specific leucocyte surface marker CD45 and macrophage marker CD68. Given the beneficial effect of hematopoietic stem cell transplantation and stable engraftment of monocyte-derived CD68-positive macrophages, we conclude that replacement of mutant Cftr macrophages attenuates airway infection in cystic fibrosis mice.
Asunto(s)
Regulador de Conductancia de Transmembrana de Fibrosis Quística/genética , Fibrosis Quística/terapia , Trasplante de Células Madre Hematopoyéticas/métodos , Macrófagos/inmunología , Mutación , Infecciones por Pseudomonas/terapia , Pseudomonas aeruginosa/aislamiento & purificación , Animales , Fibrosis Quística/genética , Fibrosis Quística/microbiología , Células Epiteliales/microbiología , Humanos , Pulmón/microbiología , Macrófagos/microbiología , Ratones , Infecciones por Pseudomonas/complicaciones , Infecciones por Pseudomonas/microbiologíaRESUMEN
BACKGROUND: Respiratory syncytial virus (RSV) is the most common cause of acute lower respiratory tract infection in infants. Globally, RSV is responsible for approximately 3.2 million hospital admissions and about 60,000 in-hospital deaths per year. METHODS: Infection with RespIratory Syncytial Virus (IRIS) is an observational, multi-centre study enrolling infants with severe RSV infection and healthy controls. Inclusion criteria are age between 0 and 36 months and hospitalisation due to RSV infection at three German sites. Exclusion criteria are premature birth, congenital or acquired bronchopulmonary or cardiac diseases, and immunodeficiency. Healthy control probands are enrolled via recruitment of patients undergoing routine surgical procedures. Blood and respiratory specimens are collected upon admission, and RSV and other pathogens are analysed by multiplex polymerase chain reaction. Different biomaterials, including plasma, nasal lining fluid, blood cells, DNA, and RNA specimens, are sampled in a dedicated biobank. Detailed information on demographic characteristics and medical history is recorded, and comprehensive clinical data, including vital signs, medication, and interventions. DISCUSSION: The IRIS study aims to discover host and viral factors controlling RSV disease courses in infants. The approach including multi-omics characterisation in clinically well-characterized children with RSV bronchiolitis seeks to improve our understanding of the immune response against this virus. It may disclose novel diagnostic and treatment approaches for respiratory infections in infants. TRIAL REGISTRATION: ClinicalTrials.gov, NCT04925310. Registered 01 October 2021-Retrospectively registered. https://clinicaltrials.gov/ct2/show/NCT04925310?cond=NCT04925310&draw=2&rank=1.