Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
PLoS Pathog ; 17(7): e1009774, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34297785

RESUMEN

The intestinal microbiota has been associated with the occurrence and development of mastitis, which is one of the most serious diseases of lactating women and female animals, but the underlying mechanism has not yet been elucidated. Aryl hydrocarbon receptor (AhR) activation by microbiota tryptophan metabolism-derived ligands is involved in maintaining host homeostasis and resisting diseases. We investigated whether AhR activation by microbiota-metabolic ligands could influence mastitis development in mice. In this study, we found that AhR activation using Ficz ameliorated mastitis symptoms, which were related to limiting NF-κB activation and enhancing barrier function. Impaired AhR activation by disturbing the intestinal microbiota initiated mastitis, and processed Escherichia coli (E. coli)-induced mastitis in mice. Supplementation with dietary tryptophan attenuated the mastitis, but attenuation was inhibited by the intestinal microbiota abrogation, while administering tryptophan metabolites including IAld and indole but not IPA, rescued the tryptophan effects in dysbiotic mice. Supplementation with a Lactobacillus reuteri (L. reuteri) strain with the capacity to produce AhR ligands also improved E. coli-induced mastitis in an AhR-dependent manner. These findings provide evidence for novel therapeutic strategies for treating mastitis, and support the role of metabolites derived from the intestinal microbiota in improving distal disease.


Asunto(s)
Microbioma Gastrointestinal/fisiología , Limosilactobacillus reuteri , Mastitis/patología , Probióticos/farmacología , Receptores de Hidrocarburo de Aril/metabolismo , Animales , Escherichia coli , Infecciones por Escherichia coli/complicaciones , Femenino , Microbioma Gastrointestinal/efectos de los fármacos , Mastitis/metabolismo , Ratones , Triptófano/farmacología
2.
Ecotoxicol Environ Saf ; 245: 114123, 2022 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-36183427

RESUMEN

Cadmium (Cd) is a type of high-risk heavy metal that can damage organs such as the liver, but its mechanism is not yet clear. Ferroptosis is a newly discovered mode of regulatory cell death. We explored whether ferroptosis is involved in Cd-induced liver damage and the underlying mechanism. Our research showed that Cd induced liver damage by inducing ferroptosis, and the use of ferroptosis inhibitors reduced the degree of liver damage. Moreover, the occurrence of ferroptosis was accompanied by the activation of the PERK-eIF2α-ATF4-CHOP signaling pathway, and inhibiting endoplasmic reticulum (ER) stress reduced ferroptosis demonstrating that ferroptosis induced by Cd is dependent on ER stress. In addition, chloroquine, a common autophagy inhibitor, mitigated ferroptosis caused by Cd exposure. Then, the iron chelator deferoxamine reduced Cd-induced lipid peroxidation and cell death, demonstrating that the iron regulation disorder caused by ferritin phagocytosis contributes to the Cd-induced ferroptosis. In conclusion, our results show that Cd-induced liver toxicity is accompanied by ferroptosis, which contributes to Cd inducing oxidative stress to trigger autophagy and ER stress to promote the process of ferroptosis.


Asunto(s)
Ferroptosis , Hepatopatías , Autofagia , Cadmio/metabolismo , Cadmio/toxicidad , Cloroquina , Deferoxamina , Estrés del Retículo Endoplásmico , Ferritinas , Humanos , Hierro/metabolismo , Quelantes del Hierro
3.
Microb Pathog ; 150: 104686, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33309847

RESUMEN

Endometritis is an inflammatory of the inner lining of the uterus caused by bacterial infections that affect female reproductive health in humans and animals. Neutrophil extracellular traps (NETs) have the ability to resist infections that caused by pathogenic invasions. It has been proved that the formation of NETs is related to certain inflammatory diseases, such as mastitis and chronic obstructive pulmonary disease (COPD). However, there are sparse studies related to NETs and endometritis. In this study, we investigated the role of NETs in lipopolysaccharide (LPS)-induced acute endometritis in mice and evaluated the therapeutic efficiency of DNaseI. We established LPS-induced endometritis model in mice and found that the formation of NETs can be detected in the mice uterine tissues in vivo. In addition, DNaseI treatment can inhibit NETs construction in LPS-induced endometritis in mice. Moreover, myeloperoxidase (MPO) activity assay indicated that DNaseI treatment remarkably alleviated the inflammatory cell infiltrations. ELISA test indicated that the treatment of DNaseI significantly inhibited the expression of the proinflammatory cytokines TNF-α, and IL-1ß. Also, DNaseI was found to increase proteins expression of the uterine tissue tight junctions and suppress LPS-induced NF-κB activation. All the results indicated that DNaseI effectively inhibits the formation of NETs by blocking the NF-κB signaling pathway and enhances the expression of tight junction proteins, consequently, alleviates inflammatory reactions in LPS-induced endometritis in mice.


Asunto(s)
Endometritis , Trampas Extracelulares , Animales , Citocinas , Endometritis/tratamiento farmacológico , Endometritis/prevención & control , Trampas Extracelulares/metabolismo , Femenino , Humanos , Lipopolisacáridos/toxicidad , Ratones , FN-kappa B/metabolismo , Transducción de Señal
4.
Gels ; 10(6)2024 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-38920950

RESUMEN

The management of brain tumors presents numerous challenges, despite the employment of multimodal therapies including surgical intervention, radiotherapy, chemotherapy, and immunotherapy. Owing to the distinct location of brain tumors and the presence of the blood-brain barrier (BBB), these tumors exhibit considerable heterogeneity and invasiveness at the histological level. Recent advancements in hydrogel research for the local treatment of brain tumors have sought to overcome the primary challenge of delivering therapeutics past the BBB, thereby ensuring efficient accumulation within brain tumor tissues. This article elaborates on various hydrogel-based delivery vectors, examining their efficacy in the local treatment of brain tumors. Additionally, it reviews the fundamental principles involved in designing intelligent hydrogels that can circumvent the BBB and penetrate larger tumor areas, thereby facilitating precise, controlled drug release. Hydrogel-based drug delivery systems (DDSs) are posited to offer a groundbreaking approach to addressing the challenges and limitations inherent in traditional oncological therapies, which are significantly impeded by the unique structural and pathological characteristics of brain tumors.

5.
Artículo en Inglés | MEDLINE | ID: mdl-38686647

RESUMEN

Nanocarriers have been researched comprehensively for the development of novel boron-containing agents in boron neutron capture therapy (BNCT). We designed and synthesized a multifunctional mesoporous silica nanoparticle (MSN)-based boron-containing agent. The latter was coated with a lipid bilayer (LB) and decorated with SP94 peptide (SFSIIHTPILPL) on the surface as SP94-LB@BA-MSN. The latter incorporated boric acid (BA) into hydrophobic mesopores, coated with an LB, and modified with SP94 peptide on the LB. SP94-LB@BA-MSN enhanced nano interface tumor-targeting ability but also prevented the premature release of drugs, which is crucial for BNCT because adequate boron content in tumor sites is required. SP94-LB@BA-MSN showed excellent efficacy in the BNCT treatment of HepG-2 cells. In animal studies with tumor-bearing mice, SP94-LB@BA-MSN exhibited a satisfactory accumulation at the tumor site. The boron content reached 40.18 ± 5.41 ppm in the tumor site 4 h after injection, which was 8.12 and 15.51 times higher than those in mice treated with boronated phenylalanine and those treated with BA. For boron, the tumor-to-normal tissue ratio was 4.41 ± 1.13 and the tumor-to-blood ratio was 5.92 ± 0.45. These results indicated that nanoparticles delivered boron to the tumor site effectively while minimizing accumulation in normal tissues. In conclusion, this composite (SP94-LB@BA-MSN) shows great promise as a boron-containing delivery agent for the treatment of hepatocellular carcinoma using BNCT. These findings highlight the potential of MSNs in the field of BNCT.

6.
NPJ Biofilms Microbiomes ; 9(1): 8, 2023 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-36755021

RESUMEN

Although emerging evidence shows that gut microbiota-mediated metabolic changes regulate intestinal pathogen invasions, little is known about whether and how gut microbiota-mediated metabolites affect pathogen infection in the distal organs. In this study, untargeted metabolomics was performed to identify the metabolic changes in a subacute ruminal acidosis (SARA)-associated mastitis model, a mastitis model with increased susceptibility to Staphylococcus aureus (S. aureus). The results showed that cows with SARA had reduced cholic acid (CA) and deoxycholic acid (DCA) levels compared to healthy cows. Treatment of mice with DCA, but not CA, alleviated S. aureus-induced mastitis by improving inflammation and the blood-milk barrier integrity in mice. DCA inhibited the activation of NF-κB and NLRP3 signatures caused by S. aureus in the mouse mammary epithelial cells, which was involved in the activation of TGR5. DCA-mediated TGR5 activation inhibited the NF-κB and NLRP3 pathways and mastitis caused by S. aureus via activating cAMP and PKA. Moreover, gut-dysbiotic mice had impaired TGR5 activation and aggravated S. aureus-induced mastitis, while restoring TGR5 activation by spore-forming bacteria reversed these changes. Furthermore, supplementation of mice with secondary bile acids producer Clostridium scindens also activated TGR5 and alleviated S. aureus-induced mastitis in mice. These results suggest that impaired secondary bile acid production by gut dysbiosis facilitates the development of S. aureus-induced mastitis and highlight a potential strategy for the intervention of distal infection by regulating gut microbial metabolism.


Asunto(s)
Microbioma Gastrointestinal , Mastitis , Animales , Bovinos , Femenino , Ratones , Ácidos y Sales Biliares , Mastitis/metabolismo , Mastitis/microbiología , FN-kappa B/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR , Staphylococcus aureus/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA