RESUMEN
The diabetes-cancer association remains underexplained. Here, we describe a glucose-signaling axis that reinforces glucose uptake and glycolysis to consolidate the Warburg effect and overcome tumor suppression. Specifically, glucose-dependent CK2 O-GlcNAcylation impedes its phosphorylation of CSN2, a modification required for the deneddylase CSN to sequester Cullin RING ligase 4 (CRL4). Glucose, therefore, elicits CSN-CRL4 dissociation to assemble the CRL4COP1 E3 ligase, which targets p53 to derepress glycolytic enzymes. A genetic or pharmacologic disruption of the O-GlcNAc-CK2-CSN2-CRL4COP1 axis abrogates glucose-induced p53 degradation and cancer cell proliferation. Diet-induced overnutrition upregulates the CRL4COP1-p53 axis to promote PyMT-induced mammary tumorigenesis in wild type but not in mammary-gland-specific p53 knockout mice. These effects of overnutrition are reversed by P28, an investigational peptide inhibitor of COP1-p53 interaction. Thus, glycometabolism self-amplifies via a glucose-induced post-translational modification cascade culminating in CRL4COP1-mediated p53 degradation. Such mutation-independent p53 checkpoint bypass may represent the carcinogenic origin and targetable vulnerability of hyperglycemia-driven cancer.
Asunto(s)
Neoplasias , Proteína p53 Supresora de Tumor , Animales , Ratones , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo , Glucosa , Ubiquitina-Proteína Ligasas/metabolismo , Carcinogénesis/genética , Transformación Celular Neoplásica/genéticaRESUMEN
The nucleoside analogue decitabine (or 5-aza-dC) is used to treat several haematological cancers. Upon its triphosphorylation and incorporation into DNA, 5-aza-dC induces covalent DNA methyltransferase 1 DNA-protein crosslinks (DNMT1-DPCs), leading to DNA hypomethylation. However, 5-aza-dC's clinical outcomes vary, and relapse is common. Using genome-scale CRISPR/Cas9 screens, we map factors determining 5-aza-dC sensitivity. Unexpectedly, we find that loss of the dCMP deaminase DCTD causes 5-aza-dC resistance, suggesting that 5-aza-dUMP generation is cytotoxic. Combining results from a subsequent genetic screen in DCTD-deficient cells with the identification of the DNMT1-DPC-proximal proteome, we uncover the ubiquitin and SUMO1 E3 ligase, TOPORS, as a new DPC repair factor. TOPORS is recruited to SUMOylated DNMT1-DPCs and promotes their degradation. Our study suggests that 5-aza-dC-induced DPCs cause cytotoxicity when DPC repair is compromised, while cytotoxicity in wild-type cells arises from perturbed nucleotide metabolism, potentially laying the foundations for future identification of predictive biomarkers for decitabine treatment.
Asunto(s)
ADN (Citosina-5-)-Metiltransferasa 1 , Decitabina , Ubiquitina-Proteína Ligasas , Decitabina/farmacología , Humanos , ADN (Citosina-5-)-Metiltransferasa 1/metabolismo , ADN (Citosina-5-)-Metiltransferasa 1/genética , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitina-Proteína Ligasas/genética , Metilación de ADN/efectos de los fármacos , Antimetabolitos Antineoplásicos/farmacología , Animales , Sumoilación/efectos de los fármacosRESUMEN
Endosomal protein trafficking is an essential cellular process that is deregulated in several diseases and targeted by pathogens. Here, we describe a role for ubiquitination in this process. We find that the E3 RING ubiquitin ligase, MAGE-L2-TRIM27, localizes to endosomes through interactions with the retromer complex. Knockdown of MAGE-L2-TRIM27 or the Ube2O E2 ubiquitin-conjugating enzyme significantly impaired retromer-mediated transport. We further demonstrate that MAGE-L2-TRIM27 ubiquitin ligase activity is required for nucleation of endosomal F-actin by the WASH regulatory complex, a known regulator of retromer-mediated transport. Mechanistic studies showed that MAGE-L2-TRIM27 facilitates K63-linked ubiquitination of WASH K220. Significantly, disruption of WASH ubiquitination impaired endosomal F-actin nucleation and retromer-dependent transport. These findings provide a cellular and molecular function for MAGE-L2-TRIM27 in retrograde transport, including an unappreciated role of K63-linked ubiquitination and identification of an activating signal of the WASH regulatory complex.
Asunto(s)
Proteínas de Unión al ADN/metabolismo , Complejos Multiproteicos/metabolismo , Proteínas Nucleares/metabolismo , Transporte de Proteínas , Proteínas/metabolismo , Actinas/metabolismo , Proteínas de Unión al ADN/genética , Endosomas/metabolismo , Técnicas de Silenciamiento del Gen , Aparato de Golgi/metabolismo , Humanos , Proteínas de Microfilamentos/metabolismo , Proteínas Nucleares/genética , Proteínas/genética , Interferencia de ARN , Enzimas Ubiquitina-Conjugadoras/metabolismo , UbiquitinaciónRESUMEN
Repair of covalent DNA-protein crosslinks (DPCs) by DNA-dependent proteases has emerged as an essential genome maintenance mechanism required for cellular viability and tumor suppression. However, how proteolysis is restricted to the crosslinked protein while leaving surrounding chromatin proteins unharmed has remained unknown. Using defined DPC model substrates, we show that the DPC protease SPRTN displays strict DNA structure-specific activity. Strikingly, SPRTN cleaves DPCs at or in direct proximity to disruptions within double-stranded DNA. In contrast, proteins crosslinked to intact double- or single-stranded DNA are not cleaved by SPRTN. NMR spectroscopy data suggest that specificity is not merely affinity-driven but achieved through a flexible bipartite strategy based on two DNA binding interfaces recognizing distinct structural features. This couples DNA context to activation of the enzyme, tightly confining SPRTN's action to biologically relevant scenarios.
Asunto(s)
Reactivos de Enlaces Cruzados/metabolismo , Proteínas de Unión al ADN/metabolismo , ADN/química , Línea Celular , Proteínas de Unión al ADN/química , Humanos , Espectroscopía de Resonancia Magnética , Modelos Biológicos , Dominios Proteicos , Relación Estructura-ActividadRESUMEN
Tumors display increased uptake and processing of nutrients to fulfill the demands of rapidly proliferating cancer cells. Seminal studies have shown that the proto-oncogene MYC promotes metabolic reprogramming by altering glutamine uptake and metabolism in cancer cells. How MYC regulates the metabolism of other amino acids in cancer is not fully understood. Using high-performance liquid chromatography (HPLC)-tandem mass spectrometry (LC-MS/MS), we found that MYC increased intracellular levels of tryptophan and tryptophan metabolites in the kynurenine pathway. MYC induced the expression of the tryptophan transporters SLC7A5 and SLC1A5 and the enzyme arylformamidase (AFMID), involved in the conversion of tryptophan into kynurenine. SLC7A5, SLC1A5, and AFMID were elevated in colon cancer cells and tissues, and kynurenine was significantly greater in tumor samples than in the respective adjacent normal tissue from patients with colon cancer. Compared with normal human colonic epithelial cells, colon cancer cells were more sensitive to the depletion of tryptophan. Blocking enzymes in the kynurenine pathway caused preferential death of established colon cancer cells and transformed colonic organoids. We found that only kynurenine and no other tryptophan metabolite promotes the nuclear translocation of the transcription factor aryl hydrocarbon receptor (AHR). Blocking the interaction between AHR and kynurenine with CH223191 reduced the proliferation of colon cancer cells. Therefore, we propose that limiting cellular kynurenine or its downstream targets could present a new strategy to reduce the proliferation of MYC-dependent cancer cells.
Asunto(s)
Neoplasias del Colon/fisiopatología , Quinurenina/metabolismo , Proteínas Proto-Oncogénicas c-myc/metabolismo , Triptófano/metabolismo , Sistema de Transporte de Aminoácidos ASC/genética , Antineoplásicos/farmacología , Arilformamidasa/genética , Línea Celular , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Regulación Neoplásica de la Expresión Génica , Humanos , Indoles/farmacología , Quinurenina/genética , Transportador de Aminoácidos Neutros Grandes 1/genética , Antígenos de Histocompatibilidad Menor/genética , Oximas/farmacología , Proto-Oncogenes Mas , Sulfonamidas/farmacologíaRESUMEN
MYC enhances protein synthesis by regulating genes involved in ribosome biogenesis and protein translation. Here, we show that MYC-induced protein translation is mediated by the transcription factor aryl hydrocarbon receptor (AHR), which is induced by MYC in colonic cells. AHR promotes protein synthesis by activating the transcription of genes required for ribosome biogenesis and protein translation, including OGFOD1 and NOLC1. Using surface sensing of translation (SUnSET) to measure global protein translation, we found that silencing AHR or its targets diminishes protein synthesis. Therefore, targeting AHR or its downstream pathways could provide a novel approach to limit biomass production in MYC-driven tumors.
Asunto(s)
Nucléolo Celular/metabolismo , Biosíntesis de Proteínas , Proteínas Proto-Oncogénicas c-myc/metabolismo , Receptores de Hidrocarburo de Aril/fisiología , Animales , Línea Celular , Nucléolo Celular/genética , Células Cultivadas , Neoplasias del Colon/genética , Neoplasias del Colon/metabolismo , Humanos , Proteínas Proto-Oncogénicas c-myc/genética , Ratas , Receptores de Hidrocarburo de Aril/biosíntesis , Receptores de Hidrocarburo de Aril/genética , Activación TranscripcionalRESUMEN
The nucleolus, a membrane-less organelle, is responsible for ribosomal RNA transcription, ribosomal RNA processing, and ribosome assembly. Nucleolar size and number are indicative of a cell's protein synthesis rate and proliferative capacity, and abnormalities in the nucleolus have been linked to neurodegenerative diseases and cancer. In this study, we demonstrated that the nucleolar protein ZNF692 directly interacts with nucleophosmin 1 (NPM1). Knocking down ZNF692 resulted in the nucleolar redistribution of NPM1 in ring-like structures and reduced protein synthesis. Purified NPM1 forms spherical condensates in vitro but mixing it with ZNF692 produces irregular condensates more closely resembling living cell nucleoli. Our findings indicate that ZNF692, by interacting with NPM1, plays a critical role in regulating nucleolar architecture and function in living cells.
Asunto(s)
Nucléolo Celular , Proteínas de Unión al ADN , Nucleofosmina , Factores de Transcripción , Nucléolo Celular/genética , Nucléolo Celular/metabolismo , Proteínas Nucleares/metabolismo , Unión Proteica , ARN Ribosómico/metabolismo , Humanos , Factores de Transcripción/metabolismo , Proteínas de Unión al ADN/metabolismoRESUMEN
Nonalcoholic fatty liver disease (NAFLD) is highly prevalent in type 2 diabetes mellitus and the elderly, impacting 40% of individuals over 70. Regulation of heterochromatin at the nuclear lamina has been associated with aging and age-dependent metabolic changes. We previously showed that changes at the lamina in aged hepatocytes and laminopathy models lead to redistribution of lamina-associated domains (LADs), opening of repressed chromatin, and up-regulation of genes regulating lipid synthesis and storage, culminating in fatty liver. Here, we test the hypothesis that change in the expression of lamina-associated proteins and nuclear shape leads to redistribution of LADs, followed by altered binding of pioneer factor FOXA2 and by up-regulation of lipid synthesis and storage, culminating in steatosis in younger NAFLD patients (aged 21-51). Changes in nuclear morphology alter LAD partitioning and reduced lamin B1 signal correlate with increased FOXA2 binding before severe steatosis in young mice placed on a western diet. Nuclear shape is also changed in younger NAFLD patients. LADs are redistrubted and lamin B1 signal decreases similarly in mild and severe steatosis. In contrast, FOXA2 binding is similar in normal and NAFLD patients with moderate steatosis and is repositioned only in NAFLD patients with more severe lipid accumulation. Hence, changes at the nuclear lamina reshape FOXA2 binding with progression of the disease. Our results suggest a role for nuclear lamina in etiology of NAFLD, irrespective of aging, with potential for improved stratification of patients and novel treatments aimed at restoring nuclear lamina function.
Asunto(s)
Diabetes Mellitus Tipo 2 , Enfermedad del Hígado Graso no Alcohólico , Ratones , Animales , Enfermedad del Hígado Graso no Alcohólico/genética , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Hepatocitos/metabolismo , Cromatina/metabolismo , Lípidos , Hígado/metabolismo , Factor Nuclear 3-beta del Hepatocito/genética , Factor Nuclear 3-beta del Hepatocito/metabolismoRESUMEN
The ligand-activated transcription factor aryl hydrocarbon receptor (AHR) regulates cellular detoxification, proliferation and immune evasion in a range of cell types and tissues, including cancer cells. In this study, we used RNA-sequencing to identify the signature of the AHR target genes regulated by the pollutant 2,3,7,8-tetrachlorodibenzodioxin (TCDD) and the endogenous ligand kynurenine (Kyn), a tryptophan-derived metabolite. This approach identified a signature of six genes (CYP1A1, ALDH1A3, ABCG2, ADGRF1 and SCIN) as commonly activated by endogenous or exogenous ligands of AHR in multiple colon cancer cell lines. Among these, the actin-severing protein scinderin (SCIN) was necessary for cell proliferation; SCIN downregulation limited cell proliferation and its expression increased it. SCIN expression was elevated in a subset of colon cancer patient samples, which also contained elevated ß-catenin levels. Remarkably, SCIN expression promoted nuclear translocation of ß-catenin and activates the WNT pathway. Our study identifies a new mechanism for adhesion-mediated signaling in which SCIN, likely via its ability to alter the actin cytoskeleton, facilitates the nuclear translocation of ß-catenin. This article has an associated First Person interview with the first authors of the paper.
Asunto(s)
Neoplasias del Colon , Contaminantes Ambientales , Dibenzodioxinas Policloradas , Humanos , Receptores de Hidrocarburo de Aril/genética , Receptores de Hidrocarburo de Aril/metabolismo , beta Catenina/genética , beta Catenina/metabolismo , Vía de Señalización Wnt/genética , Citocromo P-450 CYP1A1/genética , Citocromo P-450 CYP1A1/metabolismo , Ligandos , Quinurenina , Triptófano , Actinas/metabolismo , Neoplasias del Colon/genética , ARNRESUMEN
Hexavalent chromium [Cr(VI)] is considered a serious environmental pollutant that possesses a hazardous effect on humans even at low concentrations. Thus, the development of a bifunctional material for ultratrace-selective detection and effective elimination of Cr(VI) from the environment remains highly desirable and scarcely reported. In this work, we explore an imidazolium-appended polyfluorene derivative PF-DBT-Im as a highly sensitive/selective optical probe and a smart adsorbent for Cr(VI) ions with an ultralow detection limit of 1.77 nM and removal efficiency up to 93.7%. In an aqueous medium, PF-DBT-Im displays obvious transformation in its emission color from blue to magenta on exclusively introducing Cr(VI), facilitating naked-eye colorimetric detection. Consequently, a portable sensory device integrated with a smartphone is fabricated for realizing real-time and on-site visual detection of Cr(VI). Besides, the imidazolium groups attached onto side chains of PF-DBT-Im are found to be highly beneficial for achieving selective and efficient elimination of Cr(VI) with capacity as high as 128.71 mg g-1. More interestingly, PF-DBT-Im could be easily regenerated following treatment with KBr and can be recycled at least five times in a row. The main factor behind ultrasensitive response and excellent removal efficiency is found to be anion-exchange-induced formation of a unique ground-state complex between PF-DBT-Im and Cr(VI), as evident by FT-IR, XPS, and simulation studies. Thus, taking advantage of the excellent signal amplification property and rich ion-exchange sites, a dual-functional-conjugated polymer PF-DBT-Im is presented for the concurrent recognition and elimination of Cr(VI) ions proficiently and promptly with great prospects in environmental monitoring and water decontamination.
RESUMEN
BACKGROUND: Published data on whether post-stroke delirium (PSD) is an independent predictor of outcomes in patients with acute stroke are inconsistent and have not yet been synthesized and quantified via meta-analyses. METHODS: This systematic review and meta-analysis followed the Meta-analysis of Observational Studies in Epidemiology (MOOSE) and Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) guidelines. The study protocol involved a search of the PubMed, Embase, PsycINFO, and Medline databases from 1946 to November 1, 2023, of which prospective observational and case-control studies were included. The quality of the included studies was rated using the Newcastle Ottawa Scale. Pooled effect estimates calculated using a random-effects model were expressed as the odds ratios (ORs), hazard ratios (HRs), and standardized mean differences (SMDs) with 95% confidence intervals (CIs). The protocol was registered in PROSPERO (CRD42023472551). RESULTS: The search yielded 39 eligible articles comprising 3295 and 9643 patients with and without PSD, respectively. Thirty studies were high quality, while 9 had moderate quality. The primary analyses, adequately adjusting for predefined confounders, showed that PSD was significantly associated with mortality risk (average follow-up of 19.50 months; OR, 3.47; 95% CI, 2.35-5.12; I2, 26.0%) and poor neurological function (average follow-up of 21.75 months; OR, 3.62; 95% CI, 2.15-6.09; I2, 0). Secondary analyses, with or without inadequate adjustment, showed that PSD was significantly associated with prolonged hospital length of stay, increased risk of institutionalization, poor cognitive outcomes, and quality of life after discharge. CONCLUSIONS: This systematic review and meta-analysis provides evidence that PSD was independently associated with mortality and poor neurological function after controlling for pre-specified confounders. The prevention of PSD remains a high clinical and research priority.
Asunto(s)
Delirio , Accidente Cerebrovascular , Humanos , Delirio/epidemiología , Delirio/etiología , Accidente Cerebrovascular/complicaciones , Accidente Cerebrovascular/mortalidadRESUMEN
Enhancing the intrinsic stability of perovskite and through encapsulation to isolate water, oxygen, and UV-induced decomposition are currently common and most effective strategies in perovskite solar cells. Here, the atomic layer deposition process is employed to deposit a nanoscale (≈100 nm), uniform, and dense Al2O3 film on the front side of perovskite devices, effectively isolating them from the erosion caused by water and oxygen in the humid air. Simultaneously, nanoscale (≈100 nm) TiO2 films are also deposited on the glass surface to efficiently filter out the ultraviolet (UV) light in the light source, which induces degradation in perovskite. Ultimately, throughthe collaborative effects of both aspects, the stability of the devices is significantly improved under conditions of humid air and illumination. As a result, after storing the devices in ambient air for 1000 h, the efficiency only declines to 95%, and even after 662 h of UV exposure, the efficiency remains at 88%, far surpassing the performance of comparison devices. These results strongly indicate that the adopted Al2O3 and TiO2 thin films play a significant role in enhancing the stability of perovskite solar cells, demonstrating substantial potential for widespread industrial applications.
RESUMEN
During arbuscular mycorrhizal (AM) symbiosis, plant innate immunity is modulated to a prime state to allow for fungal colonization. The underlying mechanisms remain to be further explored. In this study, two rice genes encoding LysM extracellular (LysMe) proteins were investigated. By obtaining OsLysMepro:GUS transgenic plants and generating oslysme1, oslysme2 and oslysme1oslysme2 mutants via CRISPR/Cas9 technique, OsLysMe genes were revealed to be specifically induced in the arbusculated cells and mutations in either gene caused significantly reduced root colonization rate by AM fungus Rhizophagus irregularis. Overexpression of OsLysMe1 or OsLysMe2 dramatically increased the colonization rates in rice and Medicago truncatula. The electrophoretic mobility shift assay and dual-luciferase reporter assay supported that OsLysMe genes are regulated by OsWRI5a. Either OsLysMe1 or OsLysMe2 can efficiently rescue the impaired AM phenotype of the mtlysme2 mutant, supporting a conserved function of LysMe across monocotyledonous and dicotyledonous plants. The co-localization of OsLysMe proteins with the apoplast marker SP-OsRAmy3A implies their probable localization to the periarbuscular space (PAS) during symbiosis. Relative to the fungal biomass marker RiTEF, some defense-related genes showed disproportionately high expression levels in the oslysme mutants. These data support that rice plants deploy two OsLysMe proteins to facilitate AM symbiosis, likely by diminishing plant defense responses.
Asunto(s)
Regulación de la Expresión Génica de las Plantas , Mutación , Micorrizas , Oryza , Proteínas de Plantas , Simbiosis , Micorrizas/fisiología , Oryza/microbiología , Oryza/genética , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Mutación/genética , Plantas Modificadas Genéticamente , Medicago truncatula/microbiología , Medicago truncatula/genética , Secuencias de Aminoácidos , Espacio Extracelular/metabolismo , Raíces de Plantas/microbiología , Raíces de Plantas/metabolismo , HongosRESUMEN
BACKGROUND: Liver metastasis impacts survival in patients with gastroenteropancreatic neuroendocrine tumors (GEP-NETs); however, current guidelines lack consensus on post-resection surveillance and adjuvant therapy. A comprehensive risk stratification tool is needed to guide personalized management. OBJECTIVE: We aimed to develop and validate a predictive model for liver metastasis risk after surgical resection of GEP-NETs that incorporates pathological factors and adjuvant therapy. METHODS: Patients with GEP-NETs who underwent surgical resection with curative intent at three major Chinese hospitals (2010-2022) were identified. Univariable and multivariable Cox regression analysis identified independent risk factors of liver metastasis. The liver metastasis score (LMS) was developed using weighted risk factors and validated by tenfold cross-validation. RESULTS: Among the 724 patients included in the analytic cohort, liver metastasis occurred in 66 patients (9.1%) at a median of 36 months; patients with liver metastasis had a worse 5-year overall survival (no liver metastasis 63.6% vs. liver metastasis 95.8%; p < 0.001). Independent predictors were Ki-67 index (hazard ratio [HR] 10.36 for Ki-67 3-20%, HR 18.30 for Ki-67 >20%, vs. <3%), vascular invasion (HR 5.03), lymph node metastases (HR 2.24), and lack of adjuvant therapy (HR 3.03). The LMS demonstrated excellent discrimination (C-index 0.888) and stratified patients into low, intermediate, and high-risk relative to 5-year risk of liver metastasis: 2.9%, 20.8%, and 49.7%, respectively (p < 0.001). CONCLUSIONS: The novel LMS effectively predicted the risk of liver metastasis after surgical resection of GEP-NETs. This validated model can help guide personalized surveillance and adjuvant treatment strategies, potentially improving outcomes for high-risk patients.
RESUMEN
Crispr/CAS9-enabled homologous recombination to insert a tag in frame with an endogenous gene can circumvent difficulties such as context-dependent promoter activity that complicate analysis of gene expression and protein accumulation patterns. However, there have been few reports examining whether such gene targeting/gene tagging (GT) can alter expression of the target gene. The enzyme encoded by Δ1-pyrroline-5-carboxylate synthetase 1 (P5CS1) is key for stress-induced proline synthesis and drought resistance, yet its expression pattern and protein localisation have been difficult to assay. We used GT to insert YFP in frame with the 5' or 3' ends of the endogenous P5CS1 and At14a-Like 1 (AFL1) coding regions. Insertion at the 3' end of either gene generated homozygous lines with expression of the gene-YFP fusion indistinguishable from the wild type allele. However, for P5CS1 this occurred only after selfing and advancement to the T5 generation allowed initial homozygous lethality of the insertion to be overcome. Once this was done, the GT-generated P5CS1-YFP plants revealed new information about P5CS1 localisation and tissue-specific expression. In contrast, insertion of YFP at the 5' end of either gene blocked expression. The results demonstrate that GT can be useful for functional analyses of genes that are problematic to properly express by other means but also show that, in some cases, GT can disrupt expression of the target gene.
Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/genética , Arabidopsis/fisiología , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Plantas Modificadas Genéticamente , Regulación de la Expresión Génica de las Plantas , Estrés Fisiológico/genética , Mutagénesis Insercional/genética , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismoRESUMEN
We present a spectral-scanning frequency-modulated continuous wave (FMCW) 3D imaging system capable of producing high-resolution depth maps with an extended field of view (FOV). By employing a multipass configuration with an echelle grating, the system achieves an FOV of 5.5° along the grating axis. The resulting depth maps have a resolution of 70 × 40 pixels, with a depth resolution of 5.1â mm. The system employs an echelle grating for beam steering and leverages the multipass configuration for angular FOV magnification. Quantitative depth measurements and 3D imaging results of a static 3D-printed depth variation target are demonstrated. The proposed approach offers a promising solution for enhancing the FOV of spectral-scanning FMCW LiDAR systems within a limited wavelength-swept range, thereby reducing system complexity and cost, paving the way for improved 3D imaging applications.
RESUMEN
Metabolic labeling of glycans with clickable unnatural sugars has enabled glycan analysis in multicellular systems. However, cell-type-specific labeling of glycans in vivo remains challenging. Here we develop genetically encoded metabolic glycan labeling (GeMGL), a cell-type-specific strategy based on a bump-and-hole pair of an unnatural sugar and its matching engineered enzyme. N-pentynylacetylglucosamine (GlcNAl) serves as a bumped analog of N-acetylglucosamine (GlcNAc) that is specifically incorporated into glycans of cells expressing a UDP-GlcNAc pyrophosphorylase mutant, AGX2F383G. GeMGL with the 1,3-di-O-propionylated GlcNAl (1,3-Pr2GlcNAl) and AGX2F383G pair was demonstrated in cell cocultures, and used for specific labeling of glycans in mouse xenograft tumors. By generating a transgenic mouse line with AGX2F383G expressed under a cardiomyocyte-specific promoter, we performed specific imaging of cardiomyocyte glycans in the heart and identified 582 cardiomyocyte O-GlcNAcylated proteins with no interference from other cardiac cell types. GeMGL will facilitate cell-type-specific glycan imaging and glycoproteomics in various tissues and disease models.
Asunto(s)
Acetilglucosamina , Polisacáridos , Acetilglucosamina/metabolismo , Animales , Humanos , Ratones , Polisacáridos/metabolismoRESUMEN
In nature, biological nitrogen fixation is accomplished through the π-back-bonding mechanism of nitrogenase, which poses significant challenges for mimic artificial systems, thanks to the activation barrier associated with the N≡N bond. Consequently, this motivates us to develop efficient and reusable photocatalysts for artificial nitrogen fixation under mild conditions. We employ a charge-assisted self-assembly process toward encapsulating one polyoxometalate (POM) within a dehydrated Zr-based metal-organic framework (d-UiO-66) exhibiting nitrogen photofixation activities, thereby constructing an enzyme-mimicking photocatalyst. The dehydration of d-UiO-66 is favorable for facilitating nitrogen chemisorption and activation via the unpaired d-orbital electron at the [Zr6O6] cluster. The incorporation of POM guests enhanced the charge separation in the composites, thereby facilitating the transfer of photoexcited electrons into the π* antibonding orbital of chemisorbed N2 for efficient nitrogen fixation. Simultaneously, the catalytic efficiency of SiW9Fe3@d-UiO-66 is enhanced by 9.0 times compared to that of d-UiO-66. Moreover, SiW9Fe3@d-UiO-66 exhibits an apparent quantum efficiency (AQE) of 0.254% at 550 nm. The tactics of "working-in-tandem" achieved by POMs and d-UiO-66 are extremely vital for enhancing artificial ammonia synthesis. This study presents a paradigm for the development of an efficient artificial catalyst for nitrogen photofixation, aiming to mimic the process of biological nitrogen fixation.
RESUMEN
Sulfur disproportionation (S0DP) poses a challenge to the robust application of sulfur autotrophic denitrification due to unpredictable sulfide production, which risks the safety of downstream ecosystems. This study explored the S0DP occurrence boundaries with nitrate loading and temperature effects. The boundary values increased with the increase in temperature, exhibiting below 0.15 and 0.53 kg-N/m3/d of nitrate loading at 20 and 30 °C, respectively. A pilot-scale sulfur-siderite packed bioreactor (150 m3/d treatment capacity) was optimally designed with multiple subunits to dynamically distribute the loading of sulfur-heterologous electron acceptors. Operating two active and one standby subunit achieved an effective denitrification rate of 0.31 kg-N/m3/d at 20 °C. For the standby subunit, involving oxygen by aeration effectively transformed the facultative S0DP functional community from S0DP metabolism to aerobic respiration, but with enormous sulfur consumption resulting in ongoing sulfate production of over 3000 mg/L. Meanwhile, acidification by the sulfur oxidation process could reduce the pH to as low as 2.5, which evaluated the Gibbs free energy (ΔG) of the S0DP reaction to +2.56 kJ, thermodynamically suppressing the S0DP occurrence. Therefore, a multisubunit design along with S0DP inhibition strategies of short-term aeration and long-term acidification is suggested for managing S0DP in various practical sulfur-packed bioreactors.
Asunto(s)
Carbonatos , Ecosistema , Compuestos Férricos , Nitratos , Nitratos/metabolismo , Procesos Autotróficos , Temperatura , Azufre/metabolismo , Reactores Biológicos , Desnitrificación , NitrógenoRESUMEN
INTRODUCTION: Limited information exists regarding the impact of preoperative serum creatinine changes on cardiac surgery-associated acute kidney injury (CSA-AKI). This study aimed to investigate the development of AKI in patients with a baseline estimated glomerular filtration rate (eGFR) of ≥60 mL/min/1.73 m2 who present with an elevation in preoperative serum creatinine. METHODS: This retrospective cohort study assessed patients who underwent open-heart surgery. Preoperative serum creatinine change was calculated as the ratio of the maximum preoperative serum creatinine value to the baseline creatinine (MCR). Patients were categorized into three groups based on MCR: non-elevation (≤1.0), mild elevation (1.0 to 1.5), and pronounced elevation (≥1.5). Multivariable logistic regression was used to estimate the risk of AKI, severe AKI, and non-recovery from AKI. RESULTS: There were significant increases in the odds of AKI (adjusted odds ratio [OR], 1.42; 95% confidence interval [CI], 1.29-1.57; per 0.1 increase in MCR), severe AKI (adjusted OR, 1.28; 95% CI, 1.15-1.41), and AKI non-recovery (adjusted OR, 1.29; 95% CI, 1.16-1.43). Pronounced elevation in preoperative serum creatinine was associated with a higher risk of AKI (adjusted OR, 15.45; 95% CI, 6.63-36.00), severe AKI (adjusted OR, 3.62; 95% CI, 1.20-10.87), and AKI non-recovery (adjusted OR, 4.74; 95% CI, 1.63-13.89) than non-elevation. Mild elevation in preoperative serum creatinine was also significantly associated with AKI (adjusted OR, 3.76; 95% CI, 1.92-7.37). CONCLUSIONS: Elevation in preoperative serum creatinine from baseline was associated with an increased risk of AKI; even mild elevation significantly increased the risk of AKI.