Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Genes Cells ; 27(9): 568-578, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35842835

RESUMEN

Marine bacterium Vibrio alginolyticus forms a single flagellum at a cell pole. In Vibrio, two proteins (GTPase FlhF and ATPase FlhG) regulate the number of flagella. We previously isolated the NMB155 mutant that forms multiple flagella despite the absence of mutations in flhF and flhG. Whole-genome sequencing of NMB155 identified an E9K mutation in FliM that is a component of C-ring in the flagellar rotor. Mutations in FliM result in defects in flagellar formation (fla) and flagellar rotation (che or mot); however, there are a few reports indicating that FliM mutations increase the number of flagella. Here, we determined that the E9K mutation confers the multi-flagellar phenotype and also the che phenotype. The co-expression of wild-type FliM and FliM-E9K indicated that they were competitive in regard to determining the flagellar number. The ATPase activity of FlhG has been correlated with the number of flagella. We observed that the ATPase activity of FlhG was increased by the addition of FliM but not by the addition of FliM-E9K in vitro. This indicates that FliM interacts with FlhG to increase its ATPase activity, and the E9K mutation may inhibit this interaction. FliM may control the ATPase activity of FlhG to properly regulate the number of the polar flagellum at the cell pole.


Asunto(s)
Regulación Bacteriana de la Expresión Génica , Vibrio alginolyticus , Adenosina Trifosfatasas/genética , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Flagelos/metabolismo , Mutación , Vibrio alginolyticus/genética , Vibrio alginolyticus/metabolismo
2.
J Bacteriol ; 204(11): e0032022, 2022 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-36314831

RESUMEN

Vibrio alginolyticus has a flagellum at the cell pole, and the fla genes, involved in its formation, are hierarchically regulated in several classes. FlaK (also called FlrA) is an ortholog of Pseudomonas aeruginosa FleQ, an AAA+ ATPase that functions as a master regulator for all later fla genes. In this study, we conducted mutational analysis of FlaK to examine its ATPase activity, ability to form a multimeric structure, and function in flagellation. We cloned flaK and confirmed that its deletion caused a nonflagellated phenotype. We substituted amino acids at the ATP binding/hydrolysis site and at the putative subunit interfaces in a multimeric structure. Mutations in these sites abolished both ATPase activity and the ability of FlaK to induce downstream flagellar gene expression. The L371E mutation, at the putative subunit interface, abolished flagellar gene expression but retained ATPase activity, suggesting that ATP hydrolysis is not sufficient for flagellar gene expression. We also found that FlhG, a negative flagellar biogenesis regulator, suppressed the ATPase activity of FlaK. The 20 FlhG C-terminal residues are critical for reducing FlaK ATPase activity. Chemical cross-linking and size exclusion chromatography revealed that FlaK mostly exists as a dimer in solution and can form multimers, independent of ATP. However, ATP induced the interaction between FlhG and FlaK to form a large complex. The in vivo effects of FlhG on FlaK, such as multimer formation and/or DNA binding, are important for gene regulation. IMPORTANCE FlaK is an NtrC-type activator of the AAA+ ATPase subfamily of σ54-dependent promoters of flagellar genes. FlhG, a MinD-like ATPase, negatively regulates the polar flagellar number by collaborating with FlhF, an FtsY-like GTPase. We found that FlaK and FlhG interact in the presence of ATP to form a large complex. Mutational analysis revealed the importance of FlaK ATPase activity in flagellar gene expression and provided a model of the Vibrio molecular mechanism that regulates the flagellar number.


Asunto(s)
Proteínas Bacterianas , Proteínas de Unión al GTP Monoméricas , Proteínas Bacterianas/metabolismo , Proteínas de Unión al GTP Monoméricas/genética , Flagelos/metabolismo , Vibrio alginolyticus/metabolismo , Adenosina Trifosfatasas/genética , Adenosina Trifosfatasas/metabolismo , Adenosina Trifosfato/metabolismo , ATPasas Asociadas con Actividades Celulares Diversas/genética , Regulación Bacteriana de la Expresión Génica
3.
J Biochem ; 172(2): 99-107, 2022 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-35672947

RESUMEN

GTPase FlhF and ATPase FlhG are two key factors involved in regulating the flagellum number in Vibrio alginolyticus. FlhG is a paralogue of the Escherichia coli cell division regulator MinD and has a longer N-terminal region than MinD with a conserved DQAxxLR motif. The deletion of this N-terminal region or a Q9A mutation in the DQAxxLR motif prevents FlhG from activating the GTPase activity of FlhF in vitro and causes a multi-flagellation phenotype. The mutant FlhG proteins, especially the N-terminally deleted variant, were remarkably reduced compared to that of the wild-type protein in vivo. When the mutant FlhG was expressed at the same level as the wild-type FlhG, the number of flagella was restored to the wild-type level. Once synthesized in Vibrio cells, the N-terminal region mutation in FlhG seems not to affect the protein stability. We speculated that the flhG translation efficiency is decreased by N-terminal mutation. Our results suggest that the N-terminal region of FlhG controls the number of flagella by adjusting the FlhF activity and the amount of FlhG in vivo. We speculate that the regulation by FlhG, achieved through transcription by the master regulator FlaK, is affected by the mutations, resulting in reduced flagellar formation by FlhF.


Asunto(s)
Regulación Bacteriana de la Expresión Génica , Proteínas de Unión al GTP Monoméricas , Adenosina Trifosfatasas/genética , Adenosina Trifosfatasas/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Flagelos/metabolismo , Proteínas de Unión al GTP Monoméricas/genética , Proteínas Mutantes/genética , Vibrio alginolyticus/genética , Vibrio alginolyticus/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA