Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 121(23): e2320012121, 2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38809713

RESUMEN

Rechargeable sodium-oxygen (Na-O2) battery is deemed as a promising high-energy storage device due to the abundant sodium resources and high theoretical energy density (1,108 Wh kg-1). A series of quasisolid electrolytes are constantly being designed to restrain the dendrites growth, the volatile and leaking risks of liquid electrolytes due to the open system of Na-O2 batteries. However, the ticklish problem about low operating current density for quasisolid electrolytes still hasn't been conquered. Herein, we report a rechargeable Na-O2 battery with polyvinylidene fluoride-hexafluoropropylene recombination Nafion (PVDF-HFP@Nafion) based quasisolid polymer electrolyte (QPE) and MXene-based Na anode with gradient sodiophilic structure (M-GSS/Na). QPE displays good flame resistance, locking liquid and hydrophobic properties. The introduction of Nafion can lead to a high Na+ migration number (tNa+ = 0.68) by blocking the motion of anion and promote the formation of NaF-rich solid electrolyte interphase, resulting in excellent cycling stability at relatively high current density under quasisolid environment. In the meantime, the M-GSS/Na anode exhibits excellent dendrite inhibition ability and cycling stability. Therefore, with the synergistic effect of QPE and M-GSS/Na, constructed Na-O2 batteries run more stably and exhibit a low potential gap (0.166 V) after an initial 80 cycles at 1,000 mA g-1 and 1,000 mAh g-1. This work provides the reference basis for building quasisolid state Na-O2 batteries with long-term cycling stability.

2.
Angew Chem Int Ed Engl ; 63(6): e202310905, 2024 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-38100193

RESUMEN

Electrolytes that can keep liquid state are one of the most important physical metrics to ensure the ions transfer with stable operation of rechargeable lithium-based batteries at a wide temperature window. It is generally accepted that strong polar solvents with high melting points favor the safe operation of batteries above room temperatures but are susceptible to crystallization at low temperatures (≤-40 °C). Here, a crystallization limitation strategy was proposed to handle this issue. We demonstrate that, although the high melting points of ethylene sulfite (ES, -17 °C) and fluoroethylene carbonate (FEC, ≈23 °C), their mixtures can avoid crystallization at low temperatures, which can be attributed to low intermolecular interactions and altered molecular motion dynamics. A suitable ES/FEC ratio (10 % FEC) can balance the bulk and interface transport of ions, enabling LiNi0.8 Mn0.1 Co0.1 O2 ||lithium (NCM811||Li) full cells to deliver excellent temperature resilience and cycling stability over a wide temperature range from -50 °C to +70 °C. More than 66 % of the capacity retention was achieved at -50 °C compared to room temperature. The NCM811||Li pouch cells exhibit high cycling stability under realistic conditions (electrolyte weight to cathode capacity ratio (E/C)≤3.5 g Ah-1 , negative to positive electrode capacity ratio (N/P)≤1.09) at different temperatures.

3.
Transgenic Res ; 32(3): 193-207, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37118332

RESUMEN

An efficient genetic transformation system is of great significance for verifying gene function and improving plant breeding efficiency by gene engineering. In this study, a stable Agrobacterium mediated genetic transformation system of Juglans sigillata Dode 'Qianhe-7' was investigated using callus and negative pressure-assisted and ultrasonic-assisted transformation selection. The results showed that the axillary shoot leaves were suitable to induce callus and the callus proliferation rate could reach 516.27% when induction calli were cultured on DKW medium containing 0.5 mg L-1 indole-3-butyric acid, 1.2 mg L-1 2,4-dichlorophenoxyacetic acid and 0.5 mg L-1 kinetin for 18 d. In addition, negative pressure infection was the optimal infection method with the lowest browning rate (0.00%), high GFP conversion rate (16.67%), and better growth status. To further prove the feasibility of this genetic transformation system, the flavonol synthetase (JsFLS5) gene was successfully transformed into the into leaf-derived callus of 'Qianhe-7'. JsFLS5 expression and the content of total flavonoids in transformed callus were improved significantly compared with the untransformed callus, which proved that we had an efficient and reliable genetic transformation system using leaf-derived callus of Juglans sigillata.


Asunto(s)
Agrobacterium , Juglans , Agrobacterium/genética , Juglans/genética , Plantas Modificadas Genéticamente , Transformación Genética , Fitomejoramiento
4.
Physiol Plant ; 175(5): e14002, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37882294

RESUMEN

The escalating global climate change significantly threatens plant growth, development, and production through salinity stress. Flavonoids, a crucial category of secondary metabolites, have been extensively studied for their role in modulating plant growth and development mechanisms in the face of biological and abiotic stress. The flavonol synthetase (FLS) gene plays a key role in the biosynthesis and accumulation of flavonoids. To investigate the correlation between salt tolerance and flavonol synthesis, JsFLS5 was overexpressed in the callus of Juglans sigillata cv. "Qianhe-7." This study shows that the upregulation of JsFLS5 significantly elevates the overall flavonoid content by modulating the expression of genes associated with flavonoid synthesis under salinity stress conditions. Additionally, the overexpressing callus exhibited enhanced resistance to salt stress compared to the wild-type callus, as evidenced by reduced levels of reactive oxygen species accumulation, electrolyte leakage, and malondialdehyde content in the overexpressing callus relative to the wild type (WT). Moreover, the overexpressing callus showed higher antioxidant enzyme activity and a more efficient ascorbic acid-glutathione cycle. Furthermore, the concentration of Na+ in the overexpressing callus was lower than WT, resulting in a decreased Na+ /K+ ratio. These findings suggest that JsFLS5 overexpression in calli effectively mitigates the oxidative damage induced by osmotic stress and reduces Na+ toxicity by enhancing flavonoid synthesis under salt stress conditions. Consequently, this study offers a novel perspective for comprehending the role of JsFLS5 in the response to abiotic stress in J. sigillata.


Asunto(s)
Juglans , Tolerancia a la Sal , Especies Reactivas de Oxígeno/metabolismo , Tolerancia a la Sal/genética , Juglans/genética , Juglans/metabolismo , Plantas Modificadas Genéticamente/genética , Antioxidantes/metabolismo , Estrés Fisiológico/genética , Iones/metabolismo , Sodio/metabolismo , Flavonoides/metabolismo , Flavonoles/metabolismo , Flavonoles/farmacología , Salinidad , Regulación de la Expresión Génica de las Plantas
5.
J Am Chem Soc ; 144(40): 18435-18443, 2022 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-36170558

RESUMEN

Rechargeable aqueous Zn metal batteries have become promising candidates for large-scale electrochemical energy storage owing to their high safety and affordable low cost. However, Zn metal anode suffers from dendritic growth and hydrogen evolution reaction (HER), deteriorating the electrochemical performance. Here, we demonstrate that these challenges can be conquered by introducing a halogen ion into the Zn2+ solvation structure. By designing an electrolyte composed of zinc acetate and ammonium halide, the electron-donating anion I- can coordinate with Zn2+ and transform the traditional Zn(H2O)62+ to ZnI(H2O)5+, in which I- could transfer electrons into H2O and thus suppress HER. The dynamic electrostatic shielding layer formed by concomitant NH4+ can restrict the dendritic growth. As a result, the halogenated electrolyte achieves a high initial coulombic efficiency (CE) of 99.3% in the Zn plating/stripping process and remains at an average of ∼99.8% with uniform Zn deposition. Moreover, Zn-I batteries are constructed by using dissociative I- as the cathode and carbon felt-polyaniline as the conductive and adsorptive layer, exhibiting an average CE of 98.6% without capacity decay after 300 cycles. This work provides insights into the halogenated Zn2+ solvation structure and offers a general electrolyte design strategy for achieving a highly reversible Zn metal anode and batteries.

6.
Adv Mater ; 36(1): e2307617, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37770031

RESUMEN

Layered oxides represent a prominent class of cathodes employed in lithium-ion batteries. The structural degradation of layered cathodes causes capacity decay during cycling, which is generally induced by anisotropic lattice strain in the bulk of cathode particle and oxygen release at the surface. However, particularly in lithium-rich layered oxides (LLOs) that undergo intense oxygen redox reactions, the challenge of simultaneously addressing bulk and surface issues through a singular modification technique remains arduous. Here a thin (1-nm) and coherent spinel-like phase is constructed on the surface of LLOs particle to suppress bulk strain and surface O2 release by just adjusting the amount of lithium source during synthesis. The spinel-like phase hinders the surface O2 release by accommodating O2 inside the surface layer, while the trapped O2 in the bulk impedes strain evolution by ≈70% at high voltages compared with unmodified LLOs. Consequently, the enhanced structural stability leads to an improved capacity retention of 97.6% and a high Coulombic efficiency of ≈99.5% after 100 cycles at 0.1°C. These findings provide profound mechanistic insights into the functioning of surface structure and offer guidance for synthesizing high-capacity cathodes with superior cyclability.

7.
Adv Mater ; 35(9): e2209985, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36534438

RESUMEN

The ever-growing annual electricity generated from sustainable and intermittent energy such as wind and solar power requires cost effective and reliable electrochemical energy storage. Rechargeable batteries based on multivalent metal anodes such as Zn, Al, and Fe, taking advantage of large-scale production and affordable cost, have emerged as promising candidates. However, the uncontrollable dendrite-like metal deposition on regular substrate caused by disordered metal crystallization usually leads to premature failure of batteries and even safety concerns when the dendrite bridges the electrodes. Here it is reported that a series of metal anodes (Zn, Co, Al, Ni, and Fe) with multiple crystal structures (hexagonal close-packed, face-centered cubic, and body-centered cubic) can achieve dendrite-free and epitaxial deposition on single-crystal Cu(111) substrates enabled by the closest packing crystallography. Moreover, the closest packed facets are aligned horizontally with the substrates, resulting in compact planar construction and excellent chemical stability even at an unprecedented current density of 1 A cm-2 . The full cells under a practical anode-to-cathode capacity ratio of 2.3 show a cycling life span of over 800 cycles with Coulombic efficiency of > 99.9%. The universal approach of regulating metal electrodeposition in this work is expected to boost the development of emerging sustainable energy storage/conversion devices.

8.
Ying Yong Sheng Tai Xue Bao ; 34(3): 699-707, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37087653

RESUMEN

Walnut and Rosa roxburghii are important arbor and shrub fruit trees cultivated in the southwest mountainous area of China. Furthermore, those two species are compound cultivated in this area. In this study, we investigated the growth, yield, fruit quality, photosynthesis, and soil fertility of R. roxburghii in a 7-year typical 'Qianhe 7'/ 'Guinong 5' compound planting pattern in Guizhou. The results showed that compared with the monoculture, photosynthetic pigment content and photosynthetic rate of R. roxburghii leaves were significantly lower in the compound plantation. The growth and yield of R. roxburghii decreased significantly, with a 77.7% reduction of yield. Fruit quality of R. roxburghii was improved. The content of ascorbic acid (Vc), total phenol, carbohydrate, K, Ca, Mg, Fe, Mn, Zn, and other substances increased significantly. Fruit Vc and Mn content increased by 34.1% and 64.1%, respectively. The contents of total N, available N and K in the soil increased by 45.8%, 34.8% and 67.8%, respectively. The abundance of soil microorganisms and functional bacteria increased significantly, with the increase of bacteria and fungi being more than 36.0%. The increase of potassium bacteria and nitrogen fixing bacteria was 71.3% and 124.8%, respectively. However, the contents of organic matter, carbon-nitrogen ratio, total P, total K, available mineral nutrient (P, Ca, Mg, Fe, Mn, Cu, Zn) contents decreased. While the activities of soil urease and catalase were increased, the activities of other soil enzymes (sucrase, cellulase, protease, phosphatase) were significantly reduced. In summary, with continuous growth of walnuts in the walnut/R. roxburghii compound plantation, there was obvious shade and soil fertility competition for R. roxburghii, which affected its yield, but had a improvement effect on fruit quality.


Asunto(s)
Juglans , Rosa , Frutas , Suelo , Nueces
9.
Foods ; 11(20)2022 Oct 17.
Artículo en Inglés | MEDLINE | ID: mdl-37430990

RESUMEN

As the third most edible fungus in the world, Auricularia auricular needs a lot of sawdust for cultivation; thus, it is a win-win method to develop waste wood sawdust suitable for black agaric cultivation. This study evaluated the growth, agronomic characters and nutritional quality of A. auricula cultured on different ratios of miscellaneous sawdust and walnut waste wood sawdust, and comprehensively analyzed the feasibility of cultivating black agaric with walnut sawdust using principal component method (PCA). The results showed that the macro mineral elements and phenolic substances in walnut sawdust were significantly higher than those of miscellaneous sawdust by 18.32-89.00%. The overall activity of extracellular enzymes reached the highest when the ratio of the substrate was 0:4 (miscellaneous sawdust: walnut sawdust). The mycelia of 1:3 substrates grew well and fast. In addition, the growth cycle for A. auricula was significantly lower for 0:4 (116 d) than for 4:0 (126 d). Then, the single bag yield and biological efficiency (BE) were highest at 1:3. Moreover, the nutrients and mineral elements of A. auricula cultivated in walnut sawdust were significantly higher than that of miscellaneous sawdust, expect for total sugar and protein, and the highest overall value was found at 1:3. Finally, the results of comprehensive evaluation by PCA showed that the D value was the highest when the substrate was 1:3 and the lowest when the substrate was 4:0. Therefore, the substrate ratio of 1:3 was the most suitable for the growth of A. auricula. In this study, the high yield and quality of A. auricula were cultivated by waste walnut sawdust, which provided a new way to utilize walnut sawdust.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA