Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
J Acoust Soc Am ; 153(4): 2312, 2023 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-37092933

RESUMEN

Examination of 18 years of nearly continuous low frequency deep ocean ambient noise offshore Cape Leeuwin, Australia, finds evidence of a decreasing nonlinear trend suggestive of long-term cyclic dynamics. The nonlinear trend is found to be consistent with trends in oceanographic sea surface temperature, which are thought to drive changes in Antarctic sea ice extent. Assessment of oscillatory dynamics finds causal covariance between ambient noise levels and Indian Ocean sea surface temperature dipoles. Dynamics of annual ambient noise and Antarctic sea ice extent are examined suggesting a phase-locked relationship revealing nonlinear characteristics of the presumed dependence. Collectively, the hypotheses that deep water ambient noise dynamics in the Indian Ocean are influenced by Antarctic sea ice extent and melt dynamics and that linear models do not fully capture long-term ambient noise trends and dynamics are supported.

2.
Sci Rep ; 13(1): 4631, 2023 03 21.
Artículo en Inglés | MEDLINE | ID: mdl-36944646

RESUMEN

The extraordinary circumstances of the COVID-19 pandemic led to measures to mitigate the spread of the disease, with lockdowns and mobility restrictions at national and international levels. These measures led to sudden and sometimes dramatic reductions in human activity, including significant reductions in ship traffic in the maritime sector. We report on a reduction of deep-ocean acoustic noise in three ocean basins in 2020, based on data acquired by hydroacoustic stations in the International Monitoring System of the Comprehensive Nuclear-Test-Ban Treaty. The noise levels measured in 2020 are compared with predicted levels obtained from modelling data from previous years using Gaussian Process regression. Comparison of the predictions with measured data for 2020 shows reductions of between 1 and 3 dB in the frequency range from 10 to 100 Hz for all but one of the stations.


Asunto(s)
Acústica , COVID-19 , Mapeo Geográfico , Ruido , Océanos y Mares , COVID-19/epidemiología , Actividades Humanas/estadística & datos numéricos , Navíos/estadística & datos numéricos , Análisis de Regresión , Islas , Ecosistema , Ruido del Transporte/estadística & datos numéricos
3.
Sci Rep ; 9(1): 19519, 2019 12 20.
Artículo en Inglés | MEDLINE | ID: mdl-31863059

RESUMEN

In-situ seismic observations identified that volcanic activity of Ioto (formerly Iwojima), a volcanic island offshore Japan, increased in early September 2018. Observations of discolored nearshore waters and a splash reported by a local flyover provided evidence for a connection between undersea eruptions and recorded seismic activity. However there remain uncertainties as to when the undersea eruption series commenced and how much of the in-situ seismic activity recorded on the island was associated with volcanic earthquakes versus undersea eruptions. During this period, a large number of underwater acoustic (hydroacoustic) signals were recorded by the Comprehensive Nuclear-Test-Ban Treaty (CTBT) International Monitoring System (IMS) hydroacoustic station HA11, at Wake Island (U.S. Territory), in the northwestern Pacific Ocean with signals with directions of arrival consistent with sources located at Ioto. The analysis presented here interprets signal features of the remote hydroacoustic recordings provided by HA11 in order to attempt to distinguish between volcanic earthquake signals and undersea eruption signals originating from Ioto. Histograms of hydroacoustic events interpreted as originating from Ioto correlate well with the in-situ seismic observations at Ioto in the early stage of volcanic activity. The results presented suggest that around 75% of the signals detected at HA11 with directions of arrival consistent with Ioto as their origin could be associated with undersea eruptions, supporting the conclusion that the IMS hydroacoustic stations can contribute to volcanic event remote monitoring.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA