Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 67
Filtrar
1.
Genome Res ; 31(1): 40-50, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33334733

RESUMEN

Mutations are the source of both genetic diversity and mutational load. However, the effects of increasing environmental temperature on plant mutation rates and relative impact on specific mutational classes (e.g., insertion/deletion [indel] vs. single nucleotide variant [SNV]) are unknown. This topic is important because of the poorly defined effects of anthropogenic global temperature rise on biological systems. Here, we show the impact of temperature increase on Arabidopsis thaliana mutation, studying whole genome profiles of mutation accumulation (MA) lineages grown for 11 successive generations at 29°C. Whereas growth of A. thaliana at standard temperature (ST; 23°C) is associated with a mutation rate of 7 × 10-9 base substitutions per site per generation, growth at stressful high temperature (HT; 29°C) is highly mutagenic, increasing the mutation rate to 12 × 10-9 SNV frequency is approximately two- to threefold higher at HT than at ST, and HT-growth causes an ∼19- to 23-fold increase in indel frequency, resulting in a disproportionate increase in indels (vs. SNVs). Most HT-induced indels are 1-2 bp in size and particularly affect homopolymeric or dinucleotide A or T stretch regions of the genome. HT-induced indels occur disproportionately in nucleosome-free regions, suggesting that much HT-induced mutational damage occurs during cell-cycle phases when genomic DNA is packaged into nucleosomes. We conclude that stressful experimental temperature increases accelerate plant mutation rates and particularly accelerate the rate of indel mutation. Increasing environmental temperatures are thus likely to have significant mutagenic consequences for plants growing in the wild and may, in particular, add detrimentally to mutational load.


Asunto(s)
Arabidopsis , Arabidopsis/genética , Biodiversidad , Mutación , Tasa de Mutación , Temperatura
2.
Plant Cell ; 33(3): 566-580, 2021 05 05.
Artículo en Inglés | MEDLINE | ID: mdl-33955496

RESUMEN

The external application of nitrogen (N) fertilizers is an important practice for increasing crop production. However, the excessive use of fertilizers significantly increases production costs and causes environmental problems, making the improvement of crop N-use efficiency (NUE) crucial for sustainable agriculture in the future. Here we show that the rice (Oryza sativa) NUE quantitative trait locus DULL NITROGEN RESPONSE1 (qDNR1), which is involved in auxin homeostasis, reflects the differences in nitrate (NO3-) uptake, N assimilation, and yield enhancement between indica and japonica rice varieties. Rice plants carrying the DNR1indica allele exhibit reduced N-responsive transcription and protein abundance of DNR1. This, in turn, promotes auxin biosynthesis, thereby inducing AUXIN RESPONSE FACTOR-mediated activation of NO3- transporter and N-metabolism genes, resulting in improved NUE and grain yield. We also show that a loss-of-function mutation at the DNR1 locus is associated with increased N uptake and assimilation, resulting in improved rice yield under moderate levels of N fertilizer input. Therefore, modulating the DNR1-mediated auxin response represents a promising strategy for achieving environmentally sustainable improvements in rice yield.


Asunto(s)
Ácidos Indolacéticos/metabolismo , Mutación con Pérdida de Función/genética , Nitrógeno/metabolismo , Oryza/genética , Oryza/metabolismo , Alelos , Homeostasis/genética , Homeostasis/fisiología
3.
Nature ; 560(7720): 595-600, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-30111841

RESUMEN

Enhancing global food security by increasing the productivity of green revolution varieties of cereals risks increasing the collateral environmental damage produced by inorganic nitrogen fertilizers. Improvements in the efficiency of nitrogen use of crops are therefore essential; however, they require an in-depth understanding of the co-regulatory mechanisms that integrate growth, nitrogen assimilation and carbon fixation. Here we show that the balanced opposing activities and physical interactions of the rice GROWTH-REGULATING FACTOR 4 (GRF4) transcription factor and the growth inhibitor DELLA confer homeostatic co-regulation of growth and the metabolism of carbon and nitrogen. GRF4 promotes and integrates nitrogen assimilation, carbon fixation and growth, whereas DELLA inhibits these processes. As a consequence, the accumulation of DELLA that is characteristic of green revolution varieties confers not only yield-enhancing dwarfism, but also reduces the efficiency of nitrogen use. However, the nitrogen-use efficiency of green revolution varieties and grain yield are increased by tipping the GRF4-DELLA balance towards increased GRF4 abundance. Modulation of plant growth and metabolic co-regulation thus enables novel breeding strategies for future sustainable food security and a new green revolution.


Asunto(s)
Agricultura/métodos , Productos Agrícolas/metabolismo , Desarrollo de la Planta , Desarrollo Sostenible , Compuestos de Amonio/metabolismo , Ciclo del Carbono , Nitrógeno/metabolismo , Oryza/crecimiento & desarrollo , Oryza/metabolismo , Proteínas de Plantas/metabolismo , Triticum/crecimiento & desarrollo , Triticum/metabolismo , Granos Enteros/crecimiento & desarrollo , Granos Enteros/metabolismo
4.
J Integr Plant Biol ; 65(4): 934-949, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36515424

RESUMEN

Cell wall is the first physical barrier to aluminum (Al) toxicity. Modification of cell wall properties to change its binding capacity to Al is one of the major strategies for plant Al resistance; nevertheless, how it is regulated in rice remains largely unknown. In this study, we show that exogenous application of putrescines (Put) could significantly restore the Al resistance of art1, a rice mutant lacking the central regulator Al RESISTANCE TRANSCRIPTION FACTOR 1 (ART1), and reduce its Al accumulation particularly in the cell wall of root tips. Based on RNA-sequencing, yeast-one-hybrid and electrophoresis mobility shift assays, we identified an R2R3 MYB transcription factor OsMYB30 as the novel target in both ART1-dependent and Put-promoted Al resistance. Furthermore, transient dual-luciferase assay showed that ART1 directly inhibited the expression of OsMYB30, and in turn repressed Os4CL5-dependent 4-coumaric acid accumulation, hence reducing the Al-binding capacity of cell wall and enhancing Al resistance. Additionally, Put repressed OsMYB30 expression by eliminating Al-induced H2 O2 accumulation, while exogenous H2 O2 promoted OsMYB30 expression. We concluded that ART1 confers Put-promoted Al resistance via repression of OsMYB30-regulated modification of cell wall properties in rice.


Asunto(s)
Oryza , Oryza/genética , Oryza/metabolismo , Aluminio/toxicidad , Putrescina/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Pared Celular/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Raíces de Plantas/metabolismo
5.
Planta ; 255(5): 94, 2022 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-35347454

RESUMEN

MAIN CONCLUSION: Genetic analysis reveals a previously unknown role for ethylene signaling in regulating Arabidopsis thaliana nitrogen metabolism. Nitrogen (N) is essential for plant growth, and assimilation of soil nitrate (NO3-) and ammonium ions is an important route of N acquisition. Although N import and assimilation are subject to multiple regulatory inputs, the extent to which ethylene signaling contributes to this regulation remains poorly understood. Here, our analysis of Arabidopsis thaliana ethylene signaling mutants advances that understanding. We show that the loss of CTR1 function ctr1-1 mutation confers resistance to the toxic effects of the NO3- analogue chlorate (ClO3-), and reduces the activity of the nitrate reductase (NR) enzyme of NO3- assimilation. Our further analysis indicates that the lack of the downstream EIN2 component (conferred by novel ein2 mutations) suppresses the effect of ctr1-1, restoring ClO3- sensitivity and NR activity to normal. Collectively, our observations indicate an important role for ethylene signaling in regulating Arabidopsis thaliana NO3- metabolism. We conclude that ethylene signaling enables environmentally responsive coordination of plant growth and N metabolism.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Etilenos/metabolismo , Nitratos/metabolismo , Transducción de Señal
6.
Genome Res ; 28(1): 66-74, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-29233924

RESUMEN

Mutation is the source of genetic variation and fuels biological evolution. Many mutations first arise as DNA replication errors. These errors subsequently evade correction by cellular DNA repair, for example, by the well-known DNA mismatch repair (MMR) mechanism. Here, we determine the genome-wide effects of MMR on mutation. We first identify almost 9000 mutations accumulated over five generations in eight MMR-deficient mutation accumulation (MA) lines of the model plant species, Arabidopsis thaliana We then show that MMR deficiency greatly increases the frequency of both smaller-scale insertions and deletions (indels) and of single-nucleotide variant (SNV) mutations. Most indels involve A or T nucleotides and occur preferentially in homopolymeric (poly A or poly T) genomic stretches. In addition, we find that the likelihood of occurrence of indels in homopolymeric stretches is strongly related to stretch length, and that this relationship causes ultrahigh localized mutation rates in specific homopolymeric stretch regions. For SNVs, we show that MMR deficiency both increases their frequency and changes their molecular mutational spectrum, causing further enhancement of the GC to AT bias characteristic of organisms with normal MMR function. Our final genome-wide analyses show that MMR deficiency disproportionately increases the numbers of SNVs in genes, rather than in nongenic regions of the genome. This latter observation indicates that MMR preferentially protects genes from mutation and has important consequences for understanding the evolution of genomes during both natural selection and human tumor growth.


Asunto(s)
Arabidopsis/genética , Reparación de la Incompatibilidad de ADN/genética , Evolución Molecular , Genoma de Planta , Mutagénesis , Mutación
7.
J Integr Plant Biol ; 62(8): 1193-1212, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32619040

RESUMEN

Because Iron (Fe) is an essential element, Fe storage in plant seeds is necessary for seedling establishment following germination. However, the mechanisms controlling seed Fe storage during seed development remain largely unknown. Here we reveal that an ERF95 transcription factor regulates Arabidopsis seed Fe accumulation. We show that expression of ERF95 increases during seed maturation, and that lack of ERF95 reduces seed Fe accumulation, consequently increasing sensitivity to Fe deficiency during seedling establishment. Conversely, overexpression of ERF95 has the opposite effects. We show that lack of ERF95 decreases abundance of FER1 messenger RNA in developing seed, which encodes Fe-sequestering ferritin. Accordingly, a fer1-1 loss-of-function mutation confers reduced seed Fe accumulation, and suppresses ERF95-promoted seed Fe accumulation. In addition, ERF95 binds to specific FER1 promoter GCC-boxes and transactivates FER1 expression. We show that ERF95 expression in maturing seed is dependent on EIN3, the master transcriptional regulator of ethylene signaling. While lack of EIN3 reduces seed Fe content, overexpression of ERF95 rescues Fe accumulation in the seed of ein3 loss-of-function mutant. Finally, we show that ethylene production increases during seed maturation. We conclude that ethylene promotes seed Fe accumulation during seed maturation via an EIN3-ERF95-FER1-dependent signaling pathway.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Etilenos/farmacología , Hierro/metabolismo , Semillas/genética , Semillas/metabolismo , Factores de Transcripción/metabolismo , Arabidopsis/efectos de los fármacos , Proteínas de Arabidopsis/genética , Secuencia de Bases , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Regiones Promotoras Genéticas , Unión Proteica/efectos de los fármacos , ARN Mensajero/genética , ARN Mensajero/metabolismo , Plantones/efectos de los fármacos , Plantones/crecimiento & desarrollo , Semillas/efectos de los fármacos , Factores de Transcripción/genética
9.
Nature ; 484(7393): 242-245, 2012 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-22437497

RESUMEN

Plant growth and development are strongly affected by small differences in temperature. Current climate change has already altered global plant phenology and distribution, and projected increases in temperature pose a significant challenge to agriculture. Despite the important role of temperature on plant development, the underlying pathways are unknown. It has previously been shown that thermal acceleration of flowering is dependent on the florigen, FLOWERING LOCUS T (FT). How this occurs is, however, not understood, because the major pathway known to upregulate FT, the photoperiod pathway, is not required for thermal acceleration of flowering. Here we demonstrate a direct mechanism by which increasing temperature causes the bHLH transcription factor PHYTOCHROME INTERACTING FACTOR4 (PIF4) to activate FT. Our findings provide a new understanding of how plants control their timing of reproduction in response to temperature. Flowering time is an important trait in crops as well as affecting the life cycles of pollinator species. A molecular understanding of how temperature affects flowering will be important for mitigating the effects of climate change.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/crecimiento & desarrollo , Arabidopsis/metabolismo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Flores/crecimiento & desarrollo , Flores/metabolismo , Temperatura , Proteínas de Arabidopsis/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Regulación de la Expresión Génica de las Plantas , Fotoperiodo , Hojas de la Planta/metabolismo , Regiones Promotoras Genéticas/genética , Transducción de Señal , Factores de Tiempo
10.
Genome Res ; 24(11): 1821-9, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25314969

RESUMEN

Evolution is fueled by phenotypic diversity, which is in turn due to underlying heritable genetic (and potentially epigenetic) variation. While environmental factors are well known to influence the accumulation of novel variation in microorganisms and human cancer cells, the extent to which the natural environment influences the accumulation of novel variation in plants is relatively unknown. Here we use whole-genome and whole-methylome sequencing to test if a specific environmental stress (high-salinity soil) changes the frequency and molecular profile of accumulated mutations and epimutations (changes in cytosine methylation status) in mutation accumulation (MA) lineages of Arabidopsis thaliana. We first show that stressed lineages accumulate ∼100% more mutations, and that these mutations exhibit a distinctive molecular mutational spectrum (specific increases in relative frequency of transversion and insertion/deletion [indel] mutations). We next show that stressed lineages accumulate ∼45% more differentially methylated cytosine positions (DMPs) at CG sites (CG-DMPs) than controls, and also show that while many (∼75%) of these CG-DMPs are inherited, some can be lost in subsequent generations. Finally, we show that stress-associated CG-DMPs arise more frequently in genic than in nongenic regions of the genome. We suggest that commonly encountered natural environmental stresses can accelerate the accumulation and change the profiles of novel inherited variants in plants. Our findings are significant because stress exposure is common among plants in the wild, and they suggest that environmental factors may significantly alter the rates and patterns of incidence of the inherited novel variants that fuel plant evolution.


Asunto(s)
Arabidopsis/efectos de los fármacos , Metilación de ADN/efectos de los fármacos , Mutación/efectos de los fármacos , Cloruro de Sodio/farmacología , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Análisis Mutacional de ADN/métodos , Genoma de Planta/genética , Estudio de Asociación del Genoma Completo , Patrón de Herencia/genética , Modelos Genéticos , Salinidad , Semillas/efectos de los fármacos , Semillas/genética , Semillas/crecimiento & desarrollo , Estrés Fisiológico/efectos de los fármacos , Estrés Fisiológico/genética
11.
Nature ; 477(7365): 419-23, 2011 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-21874022

RESUMEN

Genetic differences between Arabidopsis thaliana accessions underlie the plant's extensive phenotypic variation, and until now these have been interpreted largely in the context of the annotated reference accession Col-0. Here we report the sequencing, assembly and annotation of the genomes of 18 natural A. thaliana accessions, and their transcriptomes. When assessed on the basis of the reference annotation, one-third of protein-coding genes are predicted to be disrupted in at least one accession. However, re-annotation of each genome revealed that alternative gene models often restore coding potential. Gene expression in seedlings differed for nearly half of expressed genes and was frequently associated with cis variants within 5 kilobases, as were intron retention alternative splicing events. Sequence and expression variation is most pronounced in genes that respond to the biotic environment. Our data further promote evolutionary and functional studies in A. thaliana, especially the MAGIC genetic reference population descended from these accessions.


Asunto(s)
Arabidopsis/genética , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas/genética , Genoma de Planta/genética , Transcripción Genética/genética , Arabidopsis/clasificación , Proteínas de Arabidopsis/genética , Secuencia de Bases , Genes de Plantas/genética , Genómica , Haplotipos/genética , Mutación INDEL/genética , Anotación de Secuencia Molecular , Filogenia , Polimorfismo de Nucleótido Simple/genética , Proteoma/genética , Plantones/genética , Análisis de Secuencia de ADN
12.
Plant Mol Biol ; 91(6): 651-9, 2016 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-27233644

RESUMEN

Soil salinity is one of the most commonly encountered environmental stresses affecting plant growth and crop productivity. Accordingly, plants have evolved a variety of morphological, physiological and biochemical strategies that enable them to adapt to saline growth conditions. For example, it has long been known that salinity-stress increases both the production of the gaseous stress hormone ethylene and the in planta accumulation of reactive oxygen species (ROS). Recently, there has been significant progress in understanding how the fine-tuning of ethylene biosynthesis and signaling transduction can promote salinity tolerance, and how salinity-induced ROS accumulation also acts as a signal in the mediation of salinity tolerance. Furthermore, recent advances have indicated that ethylene signaling modulates salinity responses largely via regulation of ROS-generating and ROS-scavenging mechanisms. This review focuses on these recent advances in understanding the linked roles of ethylene and ROS in salt tolerance.


Asunto(s)
Etilenos/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Cloruro de Sodio/farmacología , Estrés Fisiológico/efectos de los fármacos , Homeostasis/efectos de los fármacos , Transducción de Señal/efectos de los fármacos
13.
EMBO J ; 31(22): 4359-70, 2012 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-23064146

RESUMEN

Sodium (Na) is ubiquitous in soils, and is transported to plant shoots via transpiration through xylem elements in the vascular tissue. However, excess Na is damaging. Accordingly, control of xylem-sap Na concentration is important for maintenance of shoot Na homeostasis, especially under Na stress conditions. Here we report that shoot Na homeostasis of Arabidopsis thaliana plants grown in saline soils is conferred by reactive oxygen species (ROS) regulation of xylem-sap Na concentrations. We show that lack of A. thaliana respiratory burst oxidase protein F (AtrbohF; an NADPH oxidase catalysing ROS production) causes hypersensitivity of shoots to soil salinity. Lack of AtrbohF-dependent salinity-induced vascular ROS accumulation leads to increased Na concentrations in root vasculature cells and in xylem sap, thus causing delivery of damaging amounts of Na to the shoot. We also show that the excess shoot Na delivery caused by lack of AtrbohF is dependent upon transpiration. We conclude that AtrbohF increases ROS levels in wild-type root vasculature in response to raised soil salinity, thereby limiting Na concentrations in xylem sap, and in turn protecting shoot cells from transpiration-dependent delivery of excess Na.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , NADPH Oxidasas/metabolismo , Raíces de Plantas/metabolismo , Brotes de la Planta/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Salinidad , Sodio/metabolismo , Xilema/metabolismo , Alelos , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Transporte Biológico/fisiología , Homeostasis , Mutación , NADPH Oxidasas/genética , Raíces de Plantas/química , Brotes de la Planta/química , Sodio/análisis , Suelo/química , Xilema/química
14.
Plant Physiol ; 169(1): 283-98, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26243614

RESUMEN

Land plants have evolved adaptive regulatory mechanisms enabling the survival of environmental stresses associated with terrestrial life. Here, we focus on the evolution of the regulatory CONSTITUTIVE TRIPLE RESPONSE1 (CTR1) component of the ethylene signaling pathway that modulates stress-related changes in plant growth and development. First, we compare CTR1-like proteins from a bryophyte, Physcomitrella patens (representative of early divergent land plants), with those of more recently diverged lycophyte and angiosperm species (including Arabidopsis [Arabidopsis thaliana]) and identify a monophyletic CTR1 family. The fully sequenced P. patens genome encodes only a single member of this family (PpCTR1L). Next, we compare the functions of PpCTR1L with that of related angiosperm proteins. We show that, like angiosperm CTR1 proteins (e.g. AtCTR1 of Arabidopsis), PpCTR1L modulates downstream ethylene signaling via direct interaction with ethylene receptors. These functions, therefore, likely predate the divergence of the bryophytes from the land-plant lineage. However, we also show that PpCTR1L unexpectedly has dual functions and additionally modulates abscisic acid (ABA) signaling. In contrast, while AtCTR1 lacks detectable ABA signaling functions, Arabidopsis has during evolution acquired another homolog that is functionally distinct from AtCTR1. In conclusion, the roles of CTR1-related proteins appear to have functionally diversified during land-plant evolution, and angiosperm CTR1-related proteins appear to have lost an ancestral ABA signaling function. Our study provides new insights into how molecular events such as gene duplication and functional differentiation may have contributed to the adaptive evolution of regulatory mechanisms in plants.


Asunto(s)
Ácido Abscísico/metabolismo , Arabidopsis/metabolismo , Etilenos/metabolismo , Proteínas de Plantas/metabolismo , Transducción de Señal , Arabidopsis/genética , Briófitas/genética , Briófitas/crecimiento & desarrollo , Evolución Molecular , Duplicación de Gen , Regulación de la Expresión Génica de las Plantas , Técnicas de Inactivación de Genes , Genoma de Planta , Modelos Biológicos , Filogenia , Unión Proteica , Proteínas Quinasas/metabolismo , Receptores de Superficie Celular/metabolismo
15.
Plant Cell ; 25(9): 3535-52, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-24064768

RESUMEN

High soil Na concentrations damage plants by increasing cellular Na accumulation and K loss. Excess soil Na stimulates ethylene-induced soil-salinity tolerance, the mechanism of which we here define via characterization of an Arabidopsis thaliana mutant displaying transpiration-dependent soil-salinity tolerance. This phenotype is conferred by a loss-of-function allele of ethylene overproducer1 (ETO1; mutant alleles of which cause increased production of ethylene). We show that lack of ETO1 function confers soil-salinity tolerance through improved shoot Na/K homeostasis, effected via the ethylene resistant1-constitutive triple response1 ethylene signaling pathway. Under transpiring conditions, lack of ETO1 function reduces root Na influx and both stelar and xylem sap Na concentrations, thereby restricting root-to-shoot delivery of Na. These effects are associated with increased accumulation of respiratory burst oxidase homolog F (RBOHF)-dependent reactive oxygen species in the root stele. Additionally, lack of ETO1 function leads to significant enhancement of tissue K status by an RBOHF-independent mechanism associated with elevated high-affinity K(+) TRANSPORTER5 transcript levels. We conclude that ethylene promotes soil-salinity tolerance via improved Na/K homeostasis mediated by RBOHF-dependent regulation of Na accumulation and RBOHF-independent regulation of K accumulation.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Etilenos/metabolismo , Regulación de la Expresión Génica de las Plantas , Reguladores del Crecimiento de las Plantas/metabolismo , Transducción de Señal , Alelos , Arabidopsis/fisiología , Proteínas de Arabidopsis/metabolismo , Homeostasis , Mutación , NADPH Oxidasas/genética , NADPH Oxidasas/metabolismo , Raíces de Plantas/genética , Raíces de Plantas/fisiología , Brotes de la Planta/genética , Brotes de la Planta/fisiología , Plantas Modificadas Genéticamente , Potasio/análisis , Potasio/metabolismo , Antiportadores de Potasio-Hidrógeno/genética , Antiportadores de Potasio-Hidrógeno/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Salinidad , Tolerancia a la Sal , Sodio/análisis , Sodio/metabolismo , Xilema/genética , Xilema/fisiología
16.
Genome Res ; 22(7): 1306-15, 2012 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-22499668

RESUMEN

Ionizing radiation has long been known to induce heritable mutagenic change in DNA sequence. However, the genome-wide effect of radiation is not well understood. Here we report the molecular properties and frequency of mutations in phenotypically selected mutant lines isolated following exposure of the genetic model flowering plant Arabidopsis thaliana to fast neutrons (FNs). Previous studies suggested that FNs predominantly induce deletions longer than a kilobase in A. thaliana. However, we found a higher frequency of single base substitution than deletion mutations. While the overall frequency and molecular spectrum of fast-neutron (FN)-induced single base substitutions differed substantially from those of "background" mutations arising spontaneously in laboratory-grown plants, G:C>A:T transitions were favored in both. We found that FN-induced G:C>A:T transitions were concentrated at pyrimidine dinucleotide sites, suggesting that FNs promote the formation of mutational covalent linkages between adjacent pyrimidine residues. In addition, we found that FNs induced more single base than large deletions, and that these single base deletions were possibly caused by replication slippage. Our observations provide an initial picture of the genome-wide molecular profile of mutations induced in A. thaliana by FN irradiation and are particularly informative of the nature and extent of genome-wide mutation in lines selected on the basis of mutant phenotypes from FN-mutagenized A. thaliana populations.


Asunto(s)
Arabidopsis/efectos de la radiación , Cromosomas de las Plantas/efectos de la radiación , ADN de Plantas/genética , Genoma de Planta , Mutación Puntual , Arabidopsis/genética , Aberraciones Cromosómicas , Cromosomas de las Plantas/genética , Cromosomas de las Plantas/metabolismo , Análisis Mutacional de ADN/métodos , Replicación del ADN , ADN de Plantas/metabolismo , Neutrones Rápidos , Mutación INDEL , Fenotipo , Nucleótidos de Pirimidina/genética , Nucleótidos de Pirimidina/metabolismo , Eliminación de Secuencia
17.
Plant Cell ; 24(10): 3982-96, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23064323

RESUMEN

Fruit growth and development depend on highly coordinated hormonal activities. The phytohormone gibberellin (GA) promotes growth by inducing degradation of the growth-repressing DELLA proteins; however, the extent to which DELLA proteins contribute to GA-mediated gynoecium and fruit development remains to be clarified. Here, we provide an in-depth characterization of the role of DELLA proteins in Arabidopsis thaliana fruit growth. We show that DELLA proteins are key regulators of reproductive organ size and important for ensuring optimal fertilization. We demonstrate that the seedless fruit growth (parthenocarpy) observed in della mutants can be directly attributed to the constitutive activation of GA signaling. It has been known for >75 years that another hormone, auxin, can induce formation of seedless fruits. Using mutants with complete lack of DELLA activity, we show here that auxin-induced parthenocarpy occurs entirely through GA signaling in Arabidopsis. Finally, we uncover the existence of a DELLA-independent GA response that promotes fruit growth. This response requires GIBBERELLIN-INSENSITIVE DWARF1-mediated GA perception and a functional 26S proteasome and involves the basic helix-loop-helix protein SPATULA as a key component. Taken together, our results describe additional complexities in GA signaling during fruit development, which may be particularly important to optimize the conditions for successful reproduction.


Asunto(s)
Arabidopsis/crecimiento & desarrollo , Giberelinas/metabolismo , Arabidopsis/efectos de los fármacos , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/fisiología , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/fisiología , Flores/crecimiento & desarrollo , Frutas/efectos de los fármacos , Frutas/genética , Frutas/crecimiento & desarrollo , Frutas/metabolismo , Secuencias Hélice-Asa-Hélice , Ácidos Indolacéticos/farmacología , Reguladores del Crecimiento de las Plantas/farmacología , Complejo de la Endopetidasa Proteasomal/genética , Complejo de la Endopetidasa Proteasomal/metabolismo , Receptores de Superficie Celular/genética , Receptores de Superficie Celular/metabolismo , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Proteínas Represoras/fisiología , Reproducción , Transducción de Señal , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Factores de Transcripción/fisiología
18.
BMC Genomics ; 15: 276, 2014 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-24726045

RESUMEN

BACKGROUND: Bread wheat (Triticum aestivum) has a large, complex and hexaploid genome consisting of A, B and D homoeologous chromosome sets. Therefore each wheat gene potentially exists as a trio of A, B and D homoeoloci, each of which may contribute differentially to wheat phenotypes. We describe a novel approach combining wheat cytogenetic resources (chromosome substitution 'nullisomic-tetrasomic' lines) with next generation deep sequencing of gene transcripts (RNA-Seq), to directly and accurately identify homoeologue-specific single nucleotide variants and quantify the relative contribution of individual homoeoloci to gene expression. RESULTS: We discover, based on a sample comprising ~5-10% of the total wheat gene content, that at least 45% of wheat genes are expressed from all three distinct homoeoloci. Most of these genes show strikingly biased expression patterns in which expression is dominated by a single homoeolocus. The remaining ~55% of wheat genes are expressed from either one or two homoeoloci only, through a combination of extensive transcriptional silencing and homoeolocus loss. CONCLUSIONS: We conclude that wheat is tending towards functional diploidy, through a variety of mechanisms causing single homoeoloci to become the predominant source of gene transcripts. This discovery has profound consequences for wheat breeding and our understanding of wheat evolution.


Asunto(s)
Cromosomas de las Plantas , Regulación de la Expresión Génica de las Plantas , Genoma de Planta , Poliploidía , Transcriptoma , Triticum/genética , Secuencia de Bases , Etiquetas de Secuencia Expresada , Eliminación de Gen , Perfilación de la Expresión Génica , Biblioteca de Genes , Silenciador del Gen , Genes de Plantas , Haplotipos , Especificidad de Órganos/genética , Sitios de Carácter Cuantitativo , Reproducibilidad de los Resultados , Alineación de Secuencia , Análisis de Secuencia de ARN
19.
BMC Genomics ; 15: 224, 2014 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-24655320

RESUMEN

BACKGROUND: Oligonucleotide microarray-based comparative genomic hybridization (CGH) offers an attractive possible route for the rapid and cost-effective genome-wide discovery of deletion mutations. CGH typically involves comparison of the hybridization intensities of genomic DNA samples with microarray chip representations of entire genomes, and has widespread potential application in experimental research and medical diagnostics. However, the power to detect small deletions is low. RESULTS: Here we use a graduated series of Arabidopsis thaliana genomic deletion mutations (of sizes ranging from 4 bp to ~5 kb) to optimize CGH-based genomic deletion detection. We show that the power to detect smaller deletions (4, 28 and 104 bp) depends upon oligonucleotide density (essentially the number of genome-representative oligonucleotides on the microarray chip), and determine the oligonucleotide spacings necessary to guarantee detection of deletions of specified size. CONCLUSIONS: Our findings will enhance a wide range of research and clinical applications, and in particular will aid in the discovery of genomic deletions in the absence of a priori knowledge of their existence.


Asunto(s)
Hibridación Genómica Comparativa , Eliminación de Secuencia/genética , Arabidopsis/genética , ADN de Plantas/análisis , ADN de Plantas/metabolismo , Genoma de Planta , Análisis de Secuencia por Matrices de Oligonucleótidos
20.
Curr Biol ; 34(2): 313-326.e7, 2024 01 22.
Artículo en Inglés | MEDLINE | ID: mdl-38101405

RESUMEN

Root hairs are tubular-shaped outgrowths of epidermal cells essential for plants acquiring water and nutrients from the soil. Despite their importance, the growth of root hairs is finite. How this determinate growth is precisely regulated remains largely unknown. Here we identify LONG ROOT HAIR (LRH), a GYF domain-containing protein, as a unique repressor of root hair growth. We show that LRH inhibits the association of eukaryotic translation initiation factor 4Es (eIF4Es) with the mRNA of ROOT HAIR DEFECTIVE6-LIKE4 (RSL4) that encodes the master regulator of root hair growth, repressing RSL4 translation and thus root hair elongation. RSL4 in turn directly transactivates LRH expression to maintain a proper LRH gradient in the trichoblasts. Our findings reveal a previously uncharacterized LRH-RSL4 feedback regulatory loop that limits root hair growth, shedding new light on the mechanism underlying the determinate growth of root hairs.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Retroalimentación , Raíces de Plantas , Proliferación Celular , Regulación de la Expresión Génica de las Plantas , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA