Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
Intervalo de año de publicación
1.
J Mol Biol ; 435(11): 168037, 2023 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-37330292

RESUMEN

The assembly of an HIV-1 particle begins with the construction of a spherical lattice composed of hexamer subunits of the Gag polyprotein. The cellular metabolite inositol hexakisphosphate (IP6) binds and stabilizes the immature Gag lattice via an interaction with the six-helix bundle (6HB), a crucial structural feature of Gag hexamers that modulates both virus assembly and infectivity. The 6HB must be stable enough to promote immature Gag lattice formation, but also flexible enough to be accessible to the viral protease, which cleaves the 6HB during particle maturation. 6HB cleavage liberates the capsid (CA) domain of Gag from the adjacent spacer peptide 1 (SP1) and IP6 from its binding site. This pool of IP6 molecules then promotes the assembly of CA into the mature conical capsid that is required for infection. Depletion of IP6 in virus-producer cells results in severe defects in assembly and infectivity of wild-type (WT) virions. Here we show that in an SP1 double mutant (M4L/T8I) with a hyperstable 6HB, IP6 can block virion infectivity by preventing CA-SP1 processing. Thus, depletion of IP6 in virus-producer cells markedly increases M4L/T8I CA-SP1 processing and infectivity. We also show that the introduction of the M4L/T8I mutations partially rescues the assembly and infectivity defects induced by IP6 depletion on WT virions, likely by increasing the affinity of the immature lattice for limiting IP6. These findings reinforce the importance of the 6HB in virus assembly, maturation, and infection and highlight the ability of IP6 to modulate 6HB stability.


Asunto(s)
VIH-1 , Ácido Fítico , Ensamble de Virus , Productos del Gen gag del Virus de la Inmunodeficiencia Humana , Proteínas de la Cápside/química , Productos del Gen gag del Virus de la Inmunodeficiencia Humana/metabolismo , VIH-1/metabolismo , Mutación , Péptidos/metabolismo , Ácido Fítico/metabolismo , Virión/genética , Virión/metabolismo
2.
Curr Opin Virol ; 52: 123-134, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34915287

RESUMEN

The SARS-CoV-2 pandemic that struck in 2019 has left the world crippled with hundreds of millions of cases and millions of people dead. During this time, we have seen unprecedented support and collaboration amongst scientists to respond to this deadly disease. Advances in the field of structural biology, in particular cryoEM and cryo-electron tomography, have allowed unprecedented structural analysis of SARS-CoV-2. Here, we review the structural work on the SARS-CoV-2 virus and viral components, as well as its cellular assembly process, highlighting some important structural findings that have made significant impact on the protection from and treatment of emerging viral infections.


Asunto(s)
COVID-19 , SARS-CoV-2 , Microscopía por Crioelectrón , Tomografía con Microscopio Electrónico , Humanos , Pandemias
3.
Structure ; 28(8): 879-887.e3, 2020 08 04.
Artículo en Inglés | MEDLINE | ID: mdl-32521227

RESUMEN

Pathogenesis of anthrax disease involves two cytotoxic enzymes-edema factor (EF) and lethal factor (LF)-which are individually recruited by the protective antigen heptamer (PA7) or octamer (PA8) prechannel and subsequently translocated across channels formed on the endosomal membrane upon exposure to low pH. Here, we report the atomic structures of PA8 prechannel-bound full-length EF and LF. In this pretranslocation state, the N-terminal segment of both factors refolds into an α helix engaged in the α clamp of the prechannel. Recruitment to the PA prechannel exposes an originally buried ß strand of both toxins and enables domain organization of EF. Many interactions occur on domain interfaces in both PA prechannel-bound EF and LF, leading to toxin compaction prior to translocation. Our results provide key insights into the molecular mechanisms of translocation-coupled protein unfolding and translocation.


Asunto(s)
Antígenos Bacterianos/química , Toxinas Bacterianas/química , Antígenos Bacterianos/metabolismo , Toxinas Bacterianas/metabolismo , Microscopía por Crioelectrón , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Multimerización de Proteína
4.
Nat Commun ; 11(1): 840, 2020 02 11.
Artículo en Inglés | MEDLINE | ID: mdl-32047164

RESUMEN

Following assembly, the anthrax protective antigen (PA) forms an oligomeric translocon that unfolds and translocates either its lethal factor (LF) or edema factor (EF) into the host cell. Here, we report the cryo-EM structures of heptameric PA channels with partially unfolded LF and EF at 4.6 and 3.1-Å resolution, respectively. The first α helix and ß strand of LF and EF unfold and dock into a deep amphipathic cleft, called the α clamp, which resides at the interface of two PA monomers. The α-clamp-helix interactions exhibit structural plasticity when comparing the structures of lethal and edema toxins. EF undergoes a largescale conformational rearrangement when forming the complex with the channel. A critical loop in the PA binding interface is displaced for about 4 Å, leading to the weakening of the binding interface prior to translocation. These structures provide key insights into the molecular mechanisms of translocation-coupled protein unfolding and translocation.


Asunto(s)
Antígenos Bacterianos/química , Toxinas Bacterianas/química , Desplegamiento Proteico , Secuencia de Aminoácidos , Antígenos Bacterianos/genética , Bacillus anthracis/genética , Bacillus anthracis/metabolismo , Toxinas Bacterianas/genética , Sitios de Unión , Microscopía por Crioelectrón , Cristalografía por Rayos X , Modelos Moleculares , Unión Proteica , Conformación Proteica en Hélice alfa , Conformación Proteica en Lámina beta , Dominios y Motivos de Interacción de Proteínas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA