Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
Cell ; 186(22): 4898-4919.e25, 2023 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-37827155

RESUMEN

Expansions of repeat DNA tracts cause >70 diseases, and ongoing expansions in brains exacerbate disease. During expansion mutations, single-stranded DNAs (ssDNAs) form slipped-DNAs. We find the ssDNA-binding complexes canonical replication protein A (RPA1, RPA2, and RPA3) and Alternative-RPA (RPA1, RPA3, and primate-specific RPA4) are upregulated in Huntington disease and spinocerebellar ataxia type 1 (SCA1) patient brains. Protein interactomes of RPA and Alt-RPA reveal unique and shared partners, including modifiers of CAG instability and disease presentation. RPA enhances in vitro melting, FAN1 excision, and repair of slipped-CAGs and protects against CAG expansions in human cells. RPA overexpression in SCA1 mouse brains ablates expansions, coincident with decreased ATXN1 aggregation, reduced brain DNA damage, improved neuron morphology, and rescued motor phenotypes. In contrast, Alt-RPA inhibits melting, FAN1 excision, and repair of slipped-CAGs and promotes CAG expansions. These findings suggest a functional interplay between the two RPAs where Alt-RPA may antagonistically offset RPA's suppression of disease-associated repeat expansions, which may extend to other DNA processes.


Asunto(s)
Proteína de Replicación A , Expansión de Repetición de Trinucleótido , Animales , Humanos , Ratones , ADN/genética , Reparación de la Incompatibilidad de ADN , Enfermedad de Huntington/genética , Proteínas/genética , Ataxias Espinocerebelosas/genética , Proteína de Replicación A/metabolismo
2.
PLoS Comput Biol ; 19(7): e1011230, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37498959

RESUMEN

The Canadian Open Neuroscience Platform (CONP) takes a multifaceted approach to enabling open neuroscience, aiming to make research, data, and tools accessible to everyone, with the ultimate objective of accelerating discovery. Its core infrastructure is the CONP Portal, a repository with a decentralized design, where datasets and analysis tools across disparate platforms can be browsed, searched, accessed, and shared in accordance with FAIR principles. Another key piece of CONP infrastructure is NeuroLibre, a preprint server capable of creating and hosting executable and fully reproducible scientific publications that embed text, figures, and code. As part of its holistic approach, the CONP has also constructed frameworks and guidance for ethics and data governance, provided support and developed resources to help train the next generation of neuroscientists, and has fostered and grown an engaged community through outreach and communications. In this manuscript, we provide a high-level overview of this multipronged platform and its vision of lowering the barriers to the practice of open neuroscience and yielding the associated benefits for both individual researchers and the wider community.


Asunto(s)
Neurociencias , Canadá , Publicaciones , Comunicación
3.
J Chem Inf Model ; 64(13): 5344-5355, 2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-38916159

RESUMEN

We herewith applied a priori a generic hit identification method (POEM) for difficult targets of known three-dimensional structure, relying on the simple knowledge of physicochemical and topological properties of a user-selected cavity. Searching for local similarity to a set of fragment-bound protein microenvironments of known structure, a point cloud registration algorithm is first applied to align known subpockets to the target cavity. The resulting alignment then permits us to directly pose the corresponding seed fragments in a target cavity space not typically amenable to classical docking approaches. Last, linking potentially connectable atoms by a deep generative linker enables full ligand enumeration. When applied to the WD40 repeat (WDR) central cavity of leucine-rich repeat kinase 2 (LRRK2), an unprecedented binding site, POEM was able to quickly propose 94 potential hits, five of which were subsequently confirmed to bind in vitro to LRRK2-WDR.


Asunto(s)
Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina , Simulación del Acoplamiento Molecular , Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina/metabolismo , Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina/química , Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina/antagonistas & inhibidores , Sitios de Unión , Dominios Proteicos , Humanos , Ligandos , Unión Proteica , Repeticiones WD40 , Algoritmos
4.
Cell Mol Life Sci ; 80(2): 45, 2023 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-36651994

RESUMEN

Huntington's disease (HD) is a dominantly inherited neurodegenerative disorder resulting from a CAG expansion in the huntingtin (HTT) gene, which leads to the production and accumulation of mutant huntingtin (mHTT). While primarily considered a disorder of the central nervous system, multiple changes have been described to occur throughout the body, including activation of the immune system. In other neurodegenerative disorders, activation of the immune system has been shown to include the production of antibodies against disease-associated pathological proteins. However, the existence of mHTT-targeted antibodies has never been reported. In this study, we assessed the presence and titer of antibodies recognizing HTT/mHTT in patients with HD (n = 66) and age- and gender-matched healthy controls (n = 66) using a combination of Western blotting and ELISA. Together, these analyses revealed that antibodies capable of recognizing HTT/mHTT were detectable in the plasma samples of all participants, including healthy controls. When antibody levels were monitored at different disease stages, it was observed that antibodies against full-length mHTT were highest in patients with severe disease while antibodies against HTTExon1 were elevated in patients with mild disease. Combined, these results suggest that antibodies detecting different forms of mHTT peak at different disease stages.


Asunto(s)
Enfermedad de Huntington , Enfermedades Neurodegenerativas , Humanos , Proteína Huntingtina/genética , Proteína Huntingtina/metabolismo , Enfermedad de Huntington/metabolismo , Anticuerpos
5.
PLoS Biol ; 17(1): e3000120, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30689629

RESUMEN

Transparency lies at the heart of the open lab notebook movement. Open notebook scientists publish laboratory experiments and findings in the public domain in real time, without restrictions or omissions. Research on rare diseases is especially amenable to the open notebook model because it can both increase scientific impact and serve as a mechanism to engage patient groups in the scientific process. Here, I outline and describe my own success with my open notebook project, LabScribbles, as well as other efforts included in the openlabnotebooks.org initiative.


Asunto(s)
Difusión de la Información/ética , Difusión de la Información/métodos , Acceso a la Información/ética , Humanos , Laboratorios , Publicación de Acceso Abierto/ética , Publicación de Acceso Abierto/tendencias , Enfermedades Raras , Programas Informáticos
7.
J Biol Chem ; 294(17): 6986-7001, 2019 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-30842263

RESUMEN

The gene mutated in individuals with Huntington's disease (HD) encodes the 348-kDa huntingtin (HTT) protein. Pathogenic HD CAG-expansion mutations create a polyglutamine (polyQ) tract at the N terminus of HTT that expands above a critical threshold of ∼35 glutamine residues. The effect of these HD mutations on HTT is not well understood, in part because it is difficult to carry out biochemical, biophysical, and structural studies of this large protein. To facilitate such studies, here we have generated expression constructs for the scalable production of HTT in multiple eukaryotic expression systems. Our set of HTT expression clones comprised both N- and C-terminally FLAG-tagged HTT constructs with polyQ lengths representative of the general population, HD patients, and juvenile HD patients, as well as the more extreme polyQ expansions used in some HD tissue and animal models. Our expression system yielded milligram quantities of pure recombinant HTT protein, including many of the previously mapped post-translational modifications. We characterized both apo and HTT-HTT-associated protein 40 (HAP40) complex samples produced with this HD resource, demonstrating that this toolkit can be used to generate physiologically meaningful HTT complexes. We further demonstrate that these resources can produce sufficient material for protein-intensive experiments, such as small-angle X-ray scattering, providing biochemical insight into full-length HTT protein structure. The work outlined and the tools generated here lay a foundation for further biochemical and structural work on the HTT protein and for studying its functional interactions with other biomolecules.


Asunto(s)
Expresión Génica , Proteína Huntingtina/genética , Mutación , Animales , Clonación Molecular , Humanos , Proteína Huntingtina/metabolismo , Fosforilación , Procesamiento Proteico-Postraduccional , Spodoptera
8.
Acta Pharmacol Sin ; 39(5): 754-769, 2018 May.
Artículo en Inglés | MEDLINE | ID: mdl-29620053

RESUMEN

Many neurodegenerative diseases are characterized by impairment of protein quality control mechanisms in neuronal cells. Ineffective clearance of misfolded proteins by the proteasome, autophagy pathways and exocytosis leads to accumulation of toxic protein oligomers and aggregates in neurons. Toxic protein species affect various cellular functions resulting in the development of a spectrum of different neurodegenerative proteinopathies, including Huntington's disease (HD). Playing an integral role in proteostasis, dysfunction of the ubiquitylation system in HD is progressive and multi-faceted with numerous biochemical pathways affected, in particular, the ubiquitin-proteasome system and autophagy routes for protein aggregate degradation. Unravelling the molecular mechanisms involved in HD pathogenesis of proteostasis provides new insight in disease progression in HD as well as possible therapeutic avenues. Recent developments of potential therapeutics are discussed in this review.


Asunto(s)
Proteína Huntingtina/metabolismo , Enfermedad de Huntington/tratamiento farmacológico , Proteínas del Tejido Nervioso/metabolismo , Proteínas Nucleares/metabolismo , Proteostasis/efectos de los fármacos , Animales , Proteínas HSP90 de Choque Térmico/antagonistas & inhibidores , Humanos , Proteína Huntingtina/genética , Proteína Huntingtina/fisiología , Enfermedad de Huntington/fisiopatología , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/fisiología , Proteínas Nucleares/genética , Proteínas Nucleares/fisiología , Serina-Treonina Quinasas TOR/antagonistas & inhibidores , Expansión de Repetición de Trinucleótido
9.
PLoS Pathog ; 8(10): e1002981, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23133374

RESUMEN

Neisseria meningitis remains a leading cause of sepsis and meningitis, and vaccines are required to prevent infections by this important human pathogen. Factor H binding protein (fHbp) is a key antigen that elicits protective immunity against the meningococcus and recruits the host complement regulator, fH. As the high affinity interaction between fHbp and fH could impair immune responses, we sought to identify non-functional fHbps that could act as effective immunogens. This was achieved by alanine substitution of fHbps from all three variant groups (V1, V2 and V3 fHbp) of the protein; while some residues affected fH binding in each variant group, the distribution of key amino underlying the interaction with fH differed between the V1, V2 and V3 proteins. The atomic structure of V3 fHbp in complex with fH and of the C-terminal barrel of V2 fHbp provide explanations to the differences in the precise nature of their interactions with fH, and the instability of the V2 protein. To develop transgenic models to assess the efficacy of non-functional fHbps, we determined the structural basis of the low level of interaction between fHbp and murine fH; in addition to changes in amino acids in the fHbp binding site, murine fH has a distinct conformation compared with the human protein that would sterically inhibit binding to fHbp. Non-functional V1 fHbps were further characterised by binding and structural studies, and shown in non-transgenic and transgenic mice (expressing chimeric fH that binds fHbp and precisely regulates complement system) to retain their immunogenicity. Our findings provide a catalogue of non-functional fHbps from all variant groups that can be included in new generation meningococcal vaccines, and establish proof-in-principle for clinical studies to compare their efficacy with wild-type fHbps.


Asunto(s)
Antígenos Bacterianos/inmunología , Proteínas Bacterianas/inmunología , Meningitis Meningocócica/prevención & control , Vacunas Meningococicas/inmunología , Neisseria meningitidis/inmunología , Secuencia de Aminoácidos , Sustitución de Aminoácidos , Animales , Anticuerpos Antibacterianos/inmunología , Sitios de Unión , Factor H de Complemento/inmunología , Factor H de Complemento/metabolismo , Femenino , Humanos , Meningitis Meningocócica/inmunología , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Ratones Transgénicos , Unión Proteica/inmunología , Isoformas de Proteínas/genética , Estructura Secundaria de Proteína
10.
ACS Omega ; 9(1): 917-924, 2024 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-38222562

RESUMEN

Zinc-finger ubiquitin-binding domains (ZnF-UBDs) are noncatalytic domains mostly found in deubiquitylases (DUBs) such as USP3. They represent an underexplored opportunity for the development of deubiquitylase-targeting chimeras (DUBTACs) to pharmacologically induce the deubiquitylation of target proteins. We previously showed that ZnF-UBDs are ligandable domains. Here, a focused small molecule library screen against a panel of 11 ZnF-UBDs led to the identification of compound 59, a ligand engaging the ZnF-UBD of USP3 with a KD of 14 µM. The compound binds the expected C-terminal ubiquitin binding pocket of USP3 as shown by hydrogen-deuterium exchange mass spectrometry experiments and does not inhibit the cleavage of K48-linked diubiquitin by USP3. As such, this molecule is a chemical starting point toward chemical tools that could be used to interrogate the function of the USP3 Znf-UBD and the consequences of recruiting USP3 to ubiquitylated proteins.

11.
Sci Adv ; 10(29): eado5264, 2024 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-39028820

RESUMEN

Huntingtin protein, mutated in Huntington's disease, is implicated in nucleic acid-mediated processes, yet the evidence for direct huntingtin-nucleic acid interaction is limited. Here, we show wild-type and mutant huntingtin copurify with nucleic acids, primarily RNA, and interact directly with G-rich RNAs in in vitro assays. Huntingtin RNA-immunoprecipitation sequencing from patient-derived fibroblasts and neuronal progenitor cells expressing wild-type and mutant huntingtin revealed long noncoding RNA NEAT1 as a significantly enriched transcript. Altered NEAT1 levels were evident in Huntington's disease cells and postmortem brain tissues, and huntingtin knockdown decreased NEAT1 levels. Huntingtin colocalized with NEAT1 in paraspeckles, and we identified a high-affinity RNA motif preferred by huntingtin. This study highlights NEAT1 as a huntingtin interactor, demonstrating huntingtin's involvement in RNA-mediated functions and paraspeckle regulation.


Asunto(s)
Proteína Huntingtina , Enfermedad de Huntington , ARN Largo no Codificante , Proteínas de Unión al ARN , Humanos , Proteína Huntingtina/metabolismo , Proteína Huntingtina/genética , ARN Largo no Codificante/metabolismo , ARN Largo no Codificante/genética , Proteínas de Unión al ARN/metabolismo , Proteínas de Unión al ARN/genética , Enfermedad de Huntington/metabolismo , Enfermedad de Huntington/genética , Enfermedad de Huntington/patología , Unión Proteica , Fibroblastos/metabolismo , Mutación
12.
Structure ; 31(9): 1121-1131.e6, 2023 09 07.
Artículo en Inglés | MEDLINE | ID: mdl-37390814

RESUMEN

The huntingtin (HTT) protein plays critical roles in numerous cellular pathways by functioning as a scaffold for its many interaction partners and HTT knock out is embryonic lethal. Interrogation of HTT function is complicated by the large size of this protein so we studied a suite of structure-rationalized subdomains to investigate the structure-function relationships within the HTT-HAP40 complex. Protein samples derived from the subdomain constructs were validated using biophysical methods and cryo-electron microscopy, revealing they are natively folded and can complex with validated binding partner, HAP40. Derivatized versions of these constructs enable protein-protein interaction assays in vitro, with biotin tags, and in cells, with luciferase two-hybrid assay-based tags, which we use in proof-of-principle analyses to further interrogate the HTT-HAP40 interaction. These open-source biochemical tools enable studies of fundamental HTT biochemistry and biology, will aid the discovery of macromolecular or small-molecule binding partners and help map interaction sites across this large protein.


Asunto(s)
Proteína Huntingtina , Proteínas Nucleares , Microscopía por Crioelectrón , Proteína Huntingtina/química , Proteínas Nucleares/química , Humanos
13.
J Med Chem ; 66(15): 10273-10288, 2023 08 10.
Artículo en Inglés | MEDLINE | ID: mdl-37499118

RESUMEN

Histone deacetylase 6 (HDAC6) inhibition is an attractive strategy for treating numerous cancers, and HDAC6 catalytic inhibitors are currently in clinical trials. The HDAC6 zinc-finger ubiquitin-binding domain (UBD) binds free C-terminal diglycine motifs of unanchored ubiquitin polymer chains and protein aggregates, playing an important role in autophagy and aggresome assembly. However, targeting this domain with small molecule antagonists remains an underdeveloped avenue of HDAC6-focused drug discovery. We report SGC-UBD253 (25), a chemical probe potently targeting HDAC6-UBD in vitro with selectivity over nine other UBDs, except for weak USP16 binding. In cells, 25 is an effective antagonist of HDAC6-UBD at 1 µM, with marked proteome-wide selectivity. We identified SGC-UBD253N (32), a methylated derivative of 25 that is 300-fold less active, serving as a negative control. Together, 25 and 32 could enable further exploration of the biological function of the HDAC6-UBD and investigation of the therapeutic potential of targeting this domain.


Asunto(s)
Ubiquitina , Ubiquitinas , Histona Desacetilasa 6 , Inhibidores de Histona Desacetilasas/farmacología , Unión Proteica , Ubiquitina/metabolismo , Dedos de Zinc
14.
J Med Chem ; 64(20): 15017-15036, 2021 10 28.
Artículo en Inglés | MEDLINE | ID: mdl-34648286

RESUMEN

USP5 is a deubiquitinase that has been implicated in a range of diseases, including cancer, but no USP5-targeting chemical probe has been reported to date. Here, we present the progression of a chemical series that occupies the C-terminal ubiquitin-binding site of a poorly characterized zinc-finger ubiquitin binding domain (ZnF-UBD) of USP5 and competitively inhibits the catalytic activity of the enzyme. Exploration of the structure-activity relationship, complemented with crystallographic characterization of the ZnF-UBD bound to multiple ligands, led to the identification of 64, which binds to the USP5 ZnF-UBD with a KD of 2.8 µM and is selective over nine proteins containing structurally similar ZnF-UBD domains. 64 inhibits the USP5 catalytic cleavage of a di-ubiquitin substrate in an in vitro assay. This study provides a chemical and structural framework for the discovery of a chemical probe to delineate USP5 function in cells.


Asunto(s)
Endopeptidasas/metabolismo , Inhibidores Enzimáticos/farmacología , Relación Dosis-Respuesta a Droga , Inhibidores Enzimáticos/síntesis química , Inhibidores Enzimáticos/química , Humanos , Estructura Molecular , Relación Estructura-Actividad
15.
Commun Biol ; 4(1): 1374, 2021 12 08.
Artículo en Inglés | MEDLINE | ID: mdl-34880419

RESUMEN

Huntington's disease results from expansion of a glutamine-coding CAG tract in the huntingtin (HTT) gene, producing an aberrantly functioning form of HTT. Both wildtype and disease-state HTT form a hetero-dimer with HAP40 of unknown functional relevance. We demonstrate in vivo and in cell models that HTT and HAP40 cellular abundance are coupled. Integrating data from a 2.6 Å cryo-electron microscopy structure, cross-linking mass spectrometry, small-angle X-ray scattering, and modeling, we provide a near-atomic-level view of HTT, its molecular interaction surfaces and compacted domain architecture, orchestrated by HAP40. Native mass spectrometry reveals a remarkably stable hetero-dimer, potentially explaining the cellular inter-dependence of HTT and HAP40. The exon 1 region of HTT is dynamic but shows greater conformational variety in the polyglutamine expanded mutant than wildtype exon 1. Our data provide a foundation for future functional and drug discovery studies targeting Huntington's disease and illuminate the structural consequences of HTT polyglutamine expansion.


Asunto(s)
Exones , Proteína Huntingtina/genética , Enfermedad de Huntington/genética , Proteínas Nucleares/genética , Péptidos/metabolismo , Microscopía por Crioelectrón , Humanos , Proteína Huntingtina/metabolismo , Proteína Huntingtina/ultraestructura , Proteínas Nucleares/metabolismo , Proteínas Nucleares/ultraestructura
16.
F1000Res ; 8: 87, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31448096

RESUMEN

The fundamental goal of the growing open science movement is to increase the efficiency of the global scientific community and accelerate progress and discoveries for the common good. Central to this principle is the rapid disclosure of research outputs in open-access peer-reviewed journals and on pre-print servers. The next bold step in this direction is open laboratory notebooks, where research scientists share their research - including detailed protocols, negative and positive results - online and in near-real-time to synergize with their peers. Here, we highlight the benefits of open lab notebooks to science, society and scientists, and discuss the challenges that this nascent movement is facing. We also present the implementation and progress of our own initiative at openlabnotebooks.org, with more than 20 active contributors after one year of operation.


Asunto(s)
Laboratorios , Revisión por Pares
17.
J Med Chem ; 62(22): 10144-10155, 2019 11 27.
Artículo en Inglés | MEDLINE | ID: mdl-31663737

RESUMEN

USP5 disassembles unanchored polyubiquitin chains to recycle free monoubiquitin, and is one of the 12 ubiquitin specific proteases featuring a zinc finger ubiquitin-binding domain (ZnF-UBD). This distinct structural module has been associated with substrate positioning or allosteric modulation of catalytic activity, but its cellular function remains unclear. We screened a chemical library focused on the ZnF-UBD of USP5, crystallized hits in complex with the protein, and generated a preliminary structure-activity relationship, which enables the development of more potent and selective compounds. This work serves as a framework for the discovery of a chemical probe to delineate the function of USP5 ZnF-UBD in proteasomal degradation and other ubiquitin signaling pathways in health and disease.


Asunto(s)
Endopeptidasas/metabolismo , Inhibidores de Proteasas/química , Inhibidores de Proteasas/farmacología , Bibliotecas de Moléculas Pequeñas/química , Ubiquitina/metabolismo , Sitios de Unión , Cristalografía por Rayos X , Relación Dosis-Respuesta a Droga , Evaluación Preclínica de Medicamentos/métodos , Endopeptidasas/química , Endopeptidasas/genética , Espectroscopía de Resonancia Magnética , Dominios Proteicos , Bibliotecas de Moléculas Pequeñas/farmacología , Relación Estructura-Actividad , Resonancia por Plasmón de Superficie , Dedos de Zinc
18.
J Med Chem ; 61(10): 4517-4527, 2018 05 24.
Artículo en Inglés | MEDLINE | ID: mdl-29741882

RESUMEN

HDAC6 plays a central role in the recruitment of protein aggregates for lysosomal degradation and is a promising target for combination therapy with proteasome inhibitors in multiple myeloma. Pharmacologically displacing ubiquitin from the zinc-finger ubiquitin-binding domain (ZnF-UBD) of HDAC6 is an underexplored alternative to catalytic inhibition. Here, we present the discovery of an HDAC6 ZnF-UBD-focused chemical series and its progression from virtual screening hits to low micromolar inhibitors. A carboxylate mimicking the C-terminal extremity of ubiquitin, and an extended aromatic system stacking with W1182 and R1155, are necessary for activity. One of the compounds induced a conformational remodeling of the binding site where the primary binding pocket opens up onto a ligand-able secondary pocket that may be exploited to increase potency. The preliminary structure-activity relationship accompanied by nine crystal structures should enable further optimization into a chemical probe to investigate the merit of targeting the ZnF-UBD of HDAC6 in multiple myeloma and other diseases.


Asunto(s)
Histona Desacetilasa 6/antagonistas & inhibidores , Histona Desacetilasa 6/metabolismo , Inhibidores de Histona Desacetilasas/química , Inhibidores de Histona Desacetilasas/farmacología , Dominios y Motivos de Interacción de Proteínas/efectos de los fármacos , Ubiquitina/metabolismo , Dedos de Zinc , Dominio Catalítico , Cristalografía por Rayos X , Humanos , Ligandos , Modelos Moleculares , Estructura Molecular , Unión Proteica , Conformación Proteica , Relación Estructura-Actividad
20.
J Med Chem ; 60(21): 9090-9096, 2017 11 09.
Artículo en Inglés | MEDLINE | ID: mdl-29019676

RESUMEN

Inhibitors of HDAC6 have attractive potential in numerous cancers. HDAC6 inhibitors to date target the catalytic domains, but targeting the unique zinc-finger ubiquitin-binding domain (Zf-UBD) of HDAC6 may be an attractive alternative strategy. We developed X-ray crystallography and biophysical assays to identify and characterize small molecules capable of binding to the Zf-UBD and competing with ubiquitin binding. Our results revealed two adjacent ligand-able pockets of HDAC6 Zf-UBD and the first functional ligands for this domain.


Asunto(s)
Histona Desacetilasa 6/metabolismo , Dominios y Motivos de Interacción de Proteínas/efectos de los fármacos , Ubiquitina/metabolismo , Dedos de Zinc , Sitios de Unión , Unión Competitiva , Cristalografía por Rayos X , Histona Desacetilasa 6/antagonistas & inhibidores , Humanos , Ligandos , Unión Proteica , Ubiquitina/antagonistas & inhibidores
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA