Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
1.
Proc Natl Acad Sci U S A ; 120(14): e2221083120, 2023 04 04.
Artículo en Inglés | MEDLINE | ID: mdl-36972446

RESUMEN

Phosphatases of regenerating liver (PRL-1, PRL-2, PRL-3; also known as PTP4A1, PTP4A2, PTP4A3, respectively) control intracellular magnesium levels by interacting with the CNNM magnesium transport regulators. Still, the exact mechanism governing magnesium transport by this protein complex is not well understood. Herein, we have developed a genetically encoded intracellular magnesium-specific reporter and demonstrate that the CNNM family inhibits the function of the TRPM7 magnesium channel. We show that the small GTPase ARL15 increases CNNM3/TRPM7 protein complex formation to reduce TRPM7 activity. Conversely, PRL-2 overexpression counteracts ARL15 binding to CNNM3 and enhances the function of TRPM7 by preventing the interaction between CNNM3 and TRPM7. Moreover, while TRPM7-induced cell signaling is promoted by PRL-1/2, it is reduced when CNNM3 is overexpressed. Lowering cellular magnesium levels reduces the interaction of CNNM3 with TRPM7 in a PRL-dependent manner, whereby knockdown of PRL-1/2 restores the protein complex formation. Cotargeting of TRPM7 and PRL-1/2 alters mitochondrial function and sensitizes cells to metabolic stress induced by magnesium depletion. These findings reveal the dynamic regulation of TRPM7 function in response to PRL-1/2 levels, to coordinate magnesium transport and reprogram cellular metabolism.


Asunto(s)
Magnesio , Canales Catiónicos TRPM , Magnesio/metabolismo , Canales Catiónicos TRPM/genética , Canales Catiónicos TRPM/metabolismo , Transducción de Señal , Metabolismo Energético
2.
FASEB J ; 35(7): e21708, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34169549

RESUMEN

Metabolic reprogramming occurs in cancer cells and is regulated partly by the opposing actions of tyrosine kinases and tyrosine phosphatases. Several members of the protein tyrosine phosphatase (PTP) superfamily have been linked to cancer as either pro-oncogenic or tumor-suppressive enzymes. In order to investigate which PTPs can modulate the metabolic state of cancer cells, we performed an shRNA screen of PTPs in HCT116 human colorectal cancer cells. Among the 72 PTPs efficiently targeted, 24 were found to regulate mitochondrial respiration, 8 as negative and 16 as positive regulators. Of the latter, we selected TC-PTP (PTPN2) for further characterization since inhibition of this PTP resulted in major functional defects in oxidative metabolism without affecting glycolytic flux. Transmission electron microscopy revealed an increase in the number of damaged mitochondria in TC-PTP-null cells, demonstrating the potential role of this PTP in regulating mitochondrial homeostasis. Downregulation of STAT3 by siRNA-mediated silencing partially rescued the mitochondrial respiration defect observed in TC-PTP-deficient cells, supporting the role of this signaling axis in regulating mitochondrial activity. In addition, mitochondrial stress prevented an increased expression of electron transport chain-related genes in cells with TC-PTP silencing, correlating with decreased ATP production, cellular proliferation, and migration. Our shRNA-based metabolic screen revealed that PTPs can serve as either positive or negative regulators of cancer cell metabolism. Taken together, our findings uncover a new role for TC-PTP as an activator of mitochondrial metabolism, validating this PTP as a key target for cancer therapeutics.


Asunto(s)
Metabolismo Energético/fisiología , Dinámicas Mitocondriales/fisiología , Proteína Tirosina Fosfatasa no Receptora Tipo 2/metabolismo , Tirosina/metabolismo , Línea Celular , Línea Celular Tumoral , Proliferación Celular/fisiología , Células HCT116 , Células HEK293 , Humanos , Fosforilación/fisiología , Proteínas Tirosina Quinasas/metabolismo , ARN Interferente Pequeño/metabolismo , Factor de Transcripción STAT3/metabolismo , Transducción de Señal/fisiología
3.
Cell Mol Life Sci ; 78(13): 5427-5445, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-34089346

RESUMEN

Cyclin M (CNNM1-4) proteins maintain cellular and body magnesium (Mg2+) homeostasis. Using various biochemical approaches, we have identified members of the CNNM family as direct interacting partners of ADP-ribosylation factor-like GTPase 15 (ARL15), a small GTP-binding protein. ARL15 interacts with CNNMs at their carboxyl-terminal conserved cystathionine-ß-synthase (CBS) domains. In silico modeling of the interaction between CNNM2 and ARL15 supports that the small GTPase specifically binds the CBS1 and CNBH domains. Immunocytochemical experiments demonstrate that CNNM2 and ARL15 co-localize in the kidney, with both proteins showing subcellular localization in the endoplasmic reticulum, Golgi apparatus and the plasma membrane. Most importantly, we found that ARL15 is required for forming complex N-glycosylation of CNNMs. Overexpression of ARL15 promotes complex N-glycosylation of CNNM3. Mg2+ uptake experiments with a stable isotope demonstrate that there is a significant increase of 25Mg2+ uptake upon knockdown of ARL15 in multiple kidney cancer cell lines. Altogether, our results establish ARL15 as a novel negative regulator of Mg2+ transport by promoting the complex N-glycosylation of CNNMs.


Asunto(s)
Factores de Ribosilacion-ADP/metabolismo , Ciclinas/metabolismo , Homeostasis , Magnesio/metabolismo , Factores de Ribosilacion-ADP/genética , Transporte Biológico , Ciclinas/genética , Glicosilación , Células HEK293 , Humanos , Modelos Moleculares , Unión Proteica
4.
Proc Natl Acad Sci U S A ; 116(8): 2925-2934, 2019 02 19.
Artículo en Inglés | MEDLINE | ID: mdl-30718434

RESUMEN

Phosphatases of regenerating liver (PRL-1, PRL-2, and PRL-3, also known as PTP4A1, PTP4A2, and PTP4A3) control magnesium homeostasis through an association with the CNNM magnesium transport regulators. Although high PRL levels have been linked to cancer progression, regulation of their expression is poorly understood. Here we show that modulating intracellular magnesium levels correlates with a rapid change of PRL expression by a mechanism involving its 5'UTR mRNA region. Mutations or CRISPR-Cas9 targeting of the conserved upstream ORF present in the mRNA leader derepress PRL protein synthesis and attenuate the translational response to magnesium levels. Mechanistically, magnesium depletion reduces intracellular ATP but up-regulates PRL protein expression via activation of the AMPK/mTORC2 pathway, which controls cellular energy status. Hence, altered PRL-2 expression leads to metabolic reprogramming of the cells. These findings uncover a magnesium-sensitive mechanism controlling PRL expression, which plays a role in cellular bioenergetics.


Asunto(s)
Reprogramación Celular/genética , Metabolismo Energético/genética , Neoplasias/genética , Proteínas Tirosina Fosfatasas/genética , Quinasas de la Proteína-Quinasa Activada por el AMP , Sistemas CRISPR-Cas , Proteínas de Transporte de Catión , Proteínas de Ciclo Celular/genética , Ciclinas/genética , Regulación Neoplásica de la Expresión Génica , Humanos , Regeneración Hepática/genética , Células MCF-7 , Magnesio/metabolismo , Diana Mecanicista del Complejo 2 de la Rapamicina/genética , Proteínas de la Membrana/genética , Proteínas de Neoplasias/genética , Neoplasias/patología , Proteínas Quinasas/genética
5.
Dev Dyn ; 249(5): 610-621, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-31872467

RESUMEN

BACKGROUND: Ocular lens clouding is termed as cataract, which depending on the onset, is classified as congenital or age-related. Developing new cataract treatments requires new models. Thus far, Xenopus embryos have not been evaluated as a system for studying cataract. RESULTS: We characterized the developmental process of lens formation in Xenopus laevis tailbuds and tadpoles, and we disrupted the orthologues of three mammalian cataract-linked genes in F0 by CRISPR/Cas9. We assessed the consequences of gene inactivation by combining external examination with histochemical analyses and functional vision assays. Inactivating the key metazoan eye development transcription factor gene pax6 produces a strong eye phenotype including an absence of eye tissue. Inactivating the genes for gap-junction protein and a nuclease, gja8 and dnase2b, produces lens defects that share several features of human cataracts, including impaired vision acuity, nuclei retention in lens fiber cells, and actin fibers disorganization. We tested the potential improvement of the visual acuity of gja8 crispant tadpoles upon treatment with the molecular chaperone 4-phenylbutyrate. CONCLUSION: Xenopus is a valuable model organism to understand the molecular pathology of congenital eye defects, including cataracts, and to screen molecules with a potential to prevent or reverse cataracts.


Asunto(s)
Xenopus laevis/fisiología , Animales , Catarata/fisiopatología , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas/genética , Humanos , Cristalino/fisiología
6.
Int J Mol Sci ; 20(24)2019 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-31842432

RESUMEN

The four member family of "Cyclin and Cystathionine ß-synthase (CBS) domain divalent metal cation transport mediators", CNNMs, are the least-studied mammalian magnesium transport mediators. CNNM4 is abundant in the brain and the intestinal tract, and its abnormal activity causes Jalili Syndrome. Recent findings show that suppression of CNNM4 in mice promotes malignant progression of intestinal polyps and is linked to infertility. The association of CNNM4 with phosphatases of the regenerating liver, PRLs, abrogates its Mg2+-efflux capacity, thus resulting in an increased intracellular Mg2+ concentration that favors tumor growth. Here we present the crystal structures of the two independent intracellular domains of human CNNM4, i.e., the Bateman module and the cyclic nucleotide binding-like domain (cNMP). We also derive a model structure for the full intracellular region in the absence and presence of MgATP and the oncogenic interacting partner, PRL-1. We find that only the Bateman module interacts with ATP and Mg2+, at non-overlapping sites facilitating their positive cooperativity. Furthermore, both domains dimerize autonomously, where the cNMP domain dimer forms a rigid cleft to restrict the Mg2+ induced sliding of the inserting CBS1 motives of the Bateman module, from a twisted to a flat disk shaped dimer.


Asunto(s)
Proteínas de Transporte de Catión/química , Proteínas de Transporte de Catión/metabolismo , Magnesio/metabolismo , Adenosina Trifosfato/química , Adenosina Trifosfato/metabolismo , Secuencia de Aminoácidos , Sitios de Unión , Transporte Biológico , Humanos , Magnesio/química , Espectroscopía de Resonancia Magnética , Modelos Moleculares , Conformación Molecular , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Multimerización de Proteína , Relación Estructura-Actividad
7.
Dev Biol ; 426(2): 449-459, 2017 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-27546377

RESUMEN

Regulation of alternative splicing is an important process for cell differentiation and development. Down-regulation of Ptbp1, a regulatory RNA-binding protein, leads to developmental skin defects in Xenopus laevis. To identify Ptbp1-dependent splicing events potentially related to the phenotype, we conducted RNAseq experiments following Ptbp1 depletion. We systematically compared exon-centric and junction-centric approaches to detect differential splicing events. We showed that the junction-centric approach performs far better than the exon-centric approach in Xenopus laevis. We carried out the same comparisons using simulated data in human, which led us to propose that the better performances of the junction-centric approach in Xenopus laevis essentially relies on an incomplete exonic annotation associated with a correct transcription unit annotation. We assessed the capacity of the exon-centric and junction-centric approaches to retrieve known and to discover new Ptbp1-dependent splicing events. Notably, the junction-centric approach identified Ptbp1-controlled exons in agfg1, itga6, actn4, and tpm4 mRNAs, which were independently confirmed. We conclude that the junction-centric approach allows for a more complete and informative description of splicing events, and we propose that this finding might hold true for other species with incomplete annotations.


Asunto(s)
Empalme Alternativo , Ribonucleoproteínas Nucleares Heterogéneas/fisiología , Proteína de Unión al Tracto de Polipirimidina/fisiología , Proteínas de Xenopus/fisiología , Xenopus laevis/genética , Animales , Simulación por Computador , Embrión no Mamífero/metabolismo , Exones/genética , Biblioteca de Genes , Modelos Genéticos , Anotación de Secuencia Molecular , Morfolinos/farmacología , ARN Mensajero/genética , Alineación de Secuencia , Análisis de Secuencia de ARN , Xenopus laevis/embriología
8.
J Biol Chem ; 292(3): 786-801, 2017 01 20.
Artículo en Inglés | MEDLINE | ID: mdl-27899452

RESUMEN

Phosphatases of regenerating liver (PRLs), the most oncogenic of all protein-tyrosine phosphatases (PTPs), play a critical role in metastatic progression of cancers. Recent findings established a new paradigm by uncovering that their association with magnesium transporters of the cyclin M (CNNM) family causes a rise in intracellular magnesium levels that promote oncogenic transformation. Recently, however, essential roles for regulation of the circadian rhythm and reproduction of the CNNM family have been highlighted. Here, we describe the crystal structure of PRL-1 in complex with the Bateman module of CNNM2 (CNNM2BAT), which consists of two cystathionine ß-synthase (CBS) domains (IPR000664) and represents an intracellular regulatory module of the transporter. The structure reveals a heterotetrameric association, consisting of a disc-like homodimer of CNNM2BAT bound to two independent PRL-1 molecules, each one located at opposite tips of the disc. The structure highlights the key role played by Asp-558 at the extended loop of the CBS2 motif of CNNM2 in maintaining the association between the two proteins and proves that the interaction between CNNM2 and PRL-1 occurs via the catalytic domain of the phosphatase. Our data shed new light on the structural basis underlying the interaction between PRL phosphatases and CNNM transporters and provides a hypothesis about the molecular mechanism by which PRL-1, upon binding to CNNM2, might increase the intracellular concentration of Mg2+ thereby contributing to tumor progression and metastasis. The availability of this structure sets the basis for the rational design of compounds modulating PRL-1 and CNNM2 activities.


Asunto(s)
Proteínas de Transporte de Catión/química , Proteínas Inmediatas-Precoces/química , Magnesio/química , Proteínas Oncogénicas/química , Proteínas Tirosina Fosfatasas/química , Animales , Proteínas de Transporte de Catión/genética , Proteínas de Transporte de Catión/metabolismo , Proteínas Inmediatas-Precoces/genética , Proteínas Inmediatas-Precoces/metabolismo , Magnesio/metabolismo , Ratones , Metástasis de la Neoplasia , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/patología , Proteínas Oncogénicas/genética , Proteínas Oncogénicas/metabolismo , Unión Proteica , Dominios Proteicos , Estructura Secundaria de Proteína , Proteínas Tirosina Fosfatasas/genética , Proteínas Tirosina Fosfatasas/metabolismo
9.
Dev Biol ; 409(2): 489-501, 2016 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-26546114

RESUMEN

In humans, genetic diseases affecting skin integrity (genodermatoses) are generally caused by mutations in a small number of genes that encode structural components of the dermal-epidermal junctions. In this article, we first show that inactivation of both exosc9, which encodes a component of the RNA exosome, and ptbp1, which encodes an RNA-binding protein abundant in Xenopus embryonic skin, impairs embryonic Xenopus skin development, with the appearance of dorsal blisters along the anterior part of the fin. However, histological and electron microscopy analyses revealed that the two phenotypes are distinct. Exosc9 morphants are characterized by an increase in the apical surface of the goblet cells, loss of adhesion between the sensorial and peridermal layers, and a decrease in the number of ciliated cells within the blisters. Ptbp1 morphants are characterized by an altered goblet cell morphology. Gene expression profiling by deep RNA sequencing showed that the expression of epidermal and genodermatosis-related genes is also differentially affected in the two morphants, indicating that alterations in post-transcriptional regulations can lead to skin developmental defects through different routes. Therefore, the developing larval epidermis of Xenopus will prove to be a useful model for dissecting the post-transcriptional regulatory network involved in skin development and stability with significant implications for human diseases.


Asunto(s)
Complejo Multienzimático de Ribonucleasas del Exosoma/genética , Técnicas de Silenciamiento del Gen , Ribonucleoproteínas Nucleares Heterogéneas/genética , Proteína de Unión al Tracto de Polipirimidina/genética , Proteínas de Unión al ARN/genética , Transducción de Señal , Piel/embriología , Piel/patología , Proteínas de Xenopus/genética , Xenopus laevis/embriología , Aletas de Animales/embriología , Animales , Embrión no Mamífero/efectos de los fármacos , Embrión no Mamífero/patología , Embrión no Mamífero/ultraestructura , Epidermis/efectos de los fármacos , Epidermis/patología , Epidermis/ultraestructura , Complejo Multienzimático de Ribonucleasas del Exosoma/metabolismo , Perfilación de la Expresión Génica , Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos , Redes Reguladoras de Genes/efectos de los fármacos , Ribonucleoproteínas Nucleares Heterogéneas/metabolismo , Hibridación in Situ , Morfolinos/farmacología , Proteína de Unión al Tracto de Polipirimidina/metabolismo , Proteínas de Unión al ARN/metabolismo , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genética , Proteínas de Xenopus/metabolismo
10.
J Biol Chem ; 291(20): 10716-25, 2016 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-26969161

RESUMEN

The oncogenic phosphatase of regenerating liver 2 (PRL-2) has been shown to regulate intracellular magnesium levels by forming a complex through an extended amino acid loop present in the Bateman module of the CNNM3 magnesium transporter. Here we identified highly conserved residues located on this amino acid loop critical for the binding with PRL-2. A single point mutation (D426A) of one of those critical amino acids was found to completely disrupt PRL-2·human Cyclin M 3 (CNNM3) complex formation. Whole-cell voltage clamping revealed that expression of CNNM3 influenced the surface current, whereas overexpression of the binding mutant had no effect, indicating that the binding of PRL-2 to CNNM3 is important for the activity of the complex. Interestingly, overexpression of the CNNM3 D426A-binding mutant in cancer cells decreased their ability to proliferate under magnesium-deprived situations and under anchorage-independent growth conditions, demonstrating a PRL-2·CNNM3 complex-dependent oncogenic advantage in a more stringent environment. We further confirmed the importance of this complex in vivo using an orthotopic xenograft breast cancer model. Finally, because molecular modeling showed that the Asp-426 side chain in CNNM3 buries into the catalytic cavity of PRL-2, we showed that a PRL inhibitor could abrogate complex formation, resulting in a decrease in proliferation of human breast cancer cells. In summary, we provide evidence that this fundamental regulatory aspect of PRL-2 in cancer cells could potentially lead to broadly applicable and innovative therapeutic avenues.


Asunto(s)
Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/terapia , Ciclinas/antagonistas & inhibidores , Proteínas Tirosina Fosfatasas/antagonistas & inhibidores , Animales , Neoplasias de la Mama/patología , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Secuencia Conservada , Ciclinas/química , Ciclinas/genética , Femenino , Humanos , Ratones , Ratones Desnudos , Modelos Moleculares , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Mutación Puntual , Dominios y Motivos de Interacción de Proteínas/efectos de los fármacos , Proteínas Tirosina Fosfatasas/química , Proteínas Tirosina Fosfatasas/genética , Piridonas/farmacología , Ensayo de Tumor de Célula Madre , Ensayos Antitumor por Modelo de Xenoinjerto
11.
Cancer Res Commun ; 4(7): 1702-1714, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38904264

RESUMEN

Phosphatase of regenerating liver 2 (also known as PTP4A2) has been linked to cancer progression. Still, its exact role in glioblastoma (GBM), the most aggressive type of primary brain tumor, remains elusive. In this study, we report that pharmacologic treatment using JMS-053, a pan-phosphatase of regenerating liver inhibitor, inhibits GBM cell viability and spheroid growth. We also show that PTP4A2 is associated with a poor prognosis in gliomas, and its expression correlates with GBM aggressiveness. Using a GBM orthotopic xenograft model, we show that PTP4A2 overexpression promotes tumor growth and reduces mouse survival. Furthermore, PTP4A2 deletion leads to increased apoptosis and proinflammatory signals. Using a syngeneic GBM model, we show that depletion of PTP4A2 reduces tumor growth and induces a shift in the tumor microenvironment (TME) toward an immunosuppressive state. In vitro assays show that cell proliferation is not affected in PTP4A2-deficient or -overexpressing cells, highlighting the importance of the microenvironment in PTP4A2 functions. Collectively, our results indicate that PTP4A2 promotes GBM growth in response to microenvironmental pressure and support the rationale for targeting PTP4A2 as a therapeutic strategy against GBM. SIGNIFICANCE: High levels of PTP4A2 are associated with poor outcomes in patients with glioma and in mouse models. PTP4A2 depletion increases apoptosis and proinflammatory signals in GBM xenograft models, significantly impacts tumor growth, and rewires the TME in an immunocompetent host. PTP4A2 effects in GBM are dependent on the presence of the TME.


Asunto(s)
Neoplasias Encefálicas , Progresión de la Enfermedad , Glioblastoma , Microambiente Tumoral , Glioblastoma/patología , Glioblastoma/genética , Animales , Humanos , Ratones , Neoplasias Encefálicas/patología , Neoplasias Encefálicas/genética , Línea Celular Tumoral , Proliferación Celular , Apoptosis , Macrófagos/metabolismo , Ensayos Antitumor por Modelo de Xenoinjerto
12.
Nat Commun ; 13(1): 6816, 2022 11 25.
Artículo en Inglés | MEDLINE | ID: mdl-36433951

RESUMEN

Acetaminophen overdose is one of the leading causes of acute liver failure and liver transplantation in the Western world. Magnesium is essential in several cellular processess. The Cyclin M family is involved in magnesium transport across cell membranes. Herein, we identify that among all magnesium transporters, only Cyclin M4 expression is upregulated in the liver of patients with acetaminophen overdose, with disturbances in magnesium serum levels. In the liver, acetaminophen interferes with the mitochondrial magnesium reservoir via Cyclin M4, affecting ATP production and reactive oxygen species generation, further boosting endoplasmic reticulum stress. Importantly, Cyclin M4 mutant T495I, which impairs magnesium flux, shows no effect. Finally, an accumulation of Cyclin M4 in endoplasmic reticulum is shown under hepatoxicity. Based on our studies in mice, silencing hepatic Cyclin M4 within the window of 6 to 24 h following acetaminophen overdose ingestion may represent a therapeutic target for acetaminophen overdose induced liver injury.


Asunto(s)
Acetaminofén , Proteínas de Transporte de Catión , Enfermedad Hepática Inducida por Sustancias y Drogas , Hepatopatías , Magnesio , Animales , Ratones , Acetaminofén/toxicidad , Enfermedad Hepática Inducida por Sustancias y Drogas/sangre , Enfermedad Hepática Inducida por Sustancias y Drogas/genética , Enfermedad Hepática Inducida por Sustancias y Drogas/prevención & control , Ciclinas/genética , Ciclinas/metabolismo , Hepatopatías/sangre , Hepatopatías/genética , Hepatopatías/prevención & control , Magnesio/sangre , Magnesio/uso terapéutico , Proteínas de Transporte de Catión/genética , Proteínas de Transporte de Catión/metabolismo
13.
Biol Cell ; 102(10): 561-80, 2010 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-20812916

RESUMEN

Reverse genetics consists in the modification of the activity of a target gene to analyse the phenotypic consequences. Four main approaches are used towards this goal and will be explained in this review. Two of them are centred on genome alterations. Mutations produced by random chemical or insertional mutagenesis can be screened to recover only mutants in a specific gene of interest. Alternatively, these alterations may be specifically targeted on a gene of interest by HR (homologous recombination). The other two approaches are centred on mRNA. RNA interference is a powerful method to reduce the level of gene products, while MO (morpholino) antisense oligonucleotides alter mRNA metabolism or translation. Some model species, such as Drosophila, are amenable to most of these approaches, whereas other model species are restricted to one of them. For example, in mice and yeasts, gene targeting by HR is prevalent, whereas in Xenopus and zebrafish MO oligonucleotides are mainly used. Genome-wide collections of mutants or inactivated models obtained in several species by these approaches have been made and will help decipher gene functions in the post-genomic era.


Asunto(s)
Marcación de Gen , Animales , Animales Modificados Genéticamente , Genoma , Ratones , Modelos Genéticos , Oligonucleótidos Antisentido/genética , Interferencia de ARN , Recombinación Genética , Pez Cebra
14.
J Biol Chem ; 284(47): 32370-83, 2009 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-19762469

RESUMEN

Alternative splicing of 3'-terminal exons plays a critical role in gene expression by producing mRNA with distinct 3'-untranslated regions that regulate their fate and their expression. The Xenopus alpha-tropomyosin pre-mRNA possesses a composite internal/3'-terminal exon (exon 9A9') that is differentially processed depending on the embryonic tissue. Exon 9A9' is repressed in non-muscle tissue by the polypyrimidine tract binding protein, whereas it is selected as a 3'-terminal or internal exon in myotomal cells and adult striated muscles, respectively. We report here the identification of an intronic regulatory element, designated the upstream terminal exon enhancer (UTE), that is required for the specific usage of exon 9A9' as a 3'-terminal exon in the myotome. We demonstrate that polypyrimidine tract binding protein prevents the activity of UTE in non-muscle cells, whereas a subclass of serine/arginine rich (SR) proteins promotes the selection of exon 9A9' in a UTE-dependent way. Morpholino-targeted blocking of UTE in the embryo strongly reduced the inclusion of exon 9A9' as a 3'-terminal exon in the endogenous mRNA, demonstrating the function of UTE under physiological circumstances. This strategy allowed us to reveal a splicing pathway that generates a mRNA with no in frame stop codon and whose steady-state level is translation-dependent. This result suggests that a non-stop decay mechanism participates in the strict control of the 3'-end processing of the alpha-tropomyosin pre-mRNA.


Asunto(s)
Exones , Intrones , Proteína de Unión al Tracto de Polipirimidina/metabolismo , Empalme Alternativo , Animales , Sitios de Unión , Femenino , Regulación de la Expresión Génica , Modelos Genéticos , Músculos/metabolismo , Oocitos/metabolismo , Plásmidos/metabolismo , Poliadenilación , Ribonucleasas/metabolismo , Tropomiosina/química , Xenopus laevis
15.
Mol Cell Biol ; 27(3): 1172-90, 2007 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-17130234

RESUMEN

The protein tyrosine phosphatase PEST (PTP-PEST) is involved in the regulation of the actin cytoskeleton. Despite the emerging functions attributed to both PTPs and the actin cytoskeleton in apoptosis, the involvement of PTP-PEST in apoptotic cell death remains to be established. Using several cell-based assays, we showed that PTP-PEST participates in the regulation of apoptosis. As apoptosis progressed, a pool of PTP-PEST localized to the edge of retracting lamellipodia. Expression of PTP-PEST also sensitized cells to receptor-mediated apoptosis. Concertedly, specific degradation of PTP-PEST was observed during apoptosis. Pharmacological inhibitors, immunodepletion experiments, and in vitro cleavage assays identified caspase-3 as the primary regulator of PTP-PEST processing during apoptosis. Caspase-3 specifically cleaved PTP-PEST at the (549)DSPD motif and generated fragments, some of which displayed increased catalytic activity. Moreover, caspase-3 regulated PTP-PEST interactions with paxillin, leupaxin, Shc, and PSTPIP. PTP-PEST acted as a scaffolding molecule connecting PSTPIP to additional partners: paxillin, Shc, Csk, and activation of caspase-3 correlated with the modulation of the PTP-PEST adaptor function. In addition, cleavage of PTP-PEST facilitated cellular detachment during apoptosis. Together, our data demonstrate that PTP-PEST actively contributes to the cellular apoptotic response and reveal the importance of caspases as regulators of PTPs in apoptosis.


Asunto(s)
Apoptosis , Caspasa 3/metabolismo , Proteínas Tirosina Fosfatasas/metabolismo , Secuencia de Aminoácidos , Animales , Apoptosis/efectos de los fármacos , Caspasa 3/farmacología , Catálisis/efectos de los fármacos , Extensiones de la Superficie Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Activación Enzimática/efectos de los fármacos , Células HeLa , Humanos , Ratones , Datos de Secuencia Molecular , Unión Proteica/efectos de los fármacos , Procesamiento Proteico-Postraduccional/efectos de los fármacos , Transporte de Proteínas/efectos de los fármacos , Proteína Tirosina Fosfatasa no Receptora Tipo 12 , Proteínas Tirosina Fosfatasas/química , Proteínas Recombinantes de Fusión/metabolismo , Especificidad por Sustrato/efectos de los fármacos
16.
Commun Biol ; 3(1): 603, 2020 10 23.
Artículo en Inglés | MEDLINE | ID: mdl-33097786

RESUMEN

Protein tyrosine phosphatases are essential modulators of angiogenesis and have been identified as novel therapeutic targets in cancer and anti-angiogenesis. The roles of atypical Phosphatase of Regenerative Liver (PRL) phosphatases in this context remain poorly understood. Here, we investigate the biological function of PRL phosphatases in developmental angiogenesis in the postnatal mouse retina and in cell culture. We show that endothelial cells in the retina express PRL-2 encoded by the Ptp4a2 gene, and that inducible endothelial and global Ptp4a2 mutant mice exhibit defective retinal vascular outgrowth, arteriovenous differentiation, and sprouting angiogenesis. Mechanistically, PTP4A2 deletion limits angiogenesis by inhibiting endothelial cell migration and the VEGF-A, DLL-4/NOTCH-1 signaling pathway. This study reveals the importance of PRL-2 as a modulator of vascular development.


Asunto(s)
Proteínas Inmediatas-Precoces , Neovascularización Fisiológica/genética , Proteínas Tirosina Fosfatasas , Transducción de Señal/genética , Animales , Movimiento Celular/genética , Células Cultivadas , Células Endoteliales/citología , Femenino , Células Endoteliales de la Vena Umbilical Humana , Humanos , Proteínas Inmediatas-Precoces/genética , Proteínas Inmediatas-Precoces/metabolismo , Proteínas Inmediatas-Precoces/fisiología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Proteínas Tirosina Fosfatasas/genética , Proteínas Tirosina Fosfatasas/metabolismo , Proteínas Tirosina Fosfatasas/fisiología , Retina/citología , Retina/metabolismo , Malformaciones Vasculares/genética , Malformaciones Vasculares/patología
17.
Biochim Biophys Acta ; 1784(4): 672-82, 2008 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-18261477

RESUMEN

Dystrophin is a muscle scaffolding protein that establishes a structural link between the cytoskeleton and the extracellular matrix. Despite the large body of knowledge about the dystrophin gene and its interactions, the functional importance of the large central rod domain remains highly controversial. It is composed of 24 spectrin-like repeats interrupted by four hinges that delineate three sub-domains. We express repeat 1-3 and repeat 20-24 sub-domains, delineated by hinges 1-2 and 3-4 and the single repeats 2 and 23. We determine their lipid-binding properties, thermal and urea stabilities and refolding velocities. By using intrinsic tryptophan fluorescence spectroscopy and size exclusion chromatography, we show that repeat 2 and the repeat 1-3 sub-domain strongly interact with anionic lipids. By contrast, repeat 23 and the repeat 20-24 sub-domain do not interact with lipids. In addition, the repeat 1-3 sub-domain and repeat 2 are dramatically less stable and refold faster than the repeat 20-24 sub-domain and repeat 23. The contrasting properties of the two sub-domains clearly indicate that they make up two units of the rod domain that are not structurally interchangeable, thus providing molecular evidence supporting the observations on the biological function of dystrophin.


Asunto(s)
Distrofina/química , Lípidos/química , Estructura Terciaria de Proteína , Secuencia de Aminoácidos , Cromatografía en Gel , Dicroismo Circular , Distrofina/metabolismo , Humanos , Unión Proteica , Pliegue de Proteína , Espectrometría de Fluorescencia , Temperatura
18.
Mol Cell Biol ; 25(21): 9595-607, 2005 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-16227608

RESUMEN

The polypyrimidine tract binding protein (PTB) has been described as a global repressor of regulated exons. To investigate PTB functions in a physiological context, we used a combination of morpholino-mediated knockdown and transgenic overexpression strategies in Xenopus laevis embryos. We show that embryonic endoderm and skin deficient in PTB displayed a switch of the alpha-tropomyosin pre-mRNA 3' end processing to the somite-specific pattern that results from the utilization of an upstream 3'-terminal exon designed exon 9A9'. Conversely, somitic targeted overexpression of PTB resulted in the repression of the somite-specific exon 9A9' and a switch towards the nonmuscle pattern. These results validate PTB as a key physiological regulator of the 3' end processing of the alpha-tropomyosin pre-mRNA. Moreover, using a minigene strategy in the Xenopus oocyte, we show that in addition to repressing the splicing of exon 9A9', PTB regulates the cleavage/polyadenylation of this 3'-terminal exon.


Asunto(s)
Proteína de Unión al Tracto de Polipirimidina/fisiología , Procesamiento de Término de ARN 3' , Tropomiosina/genética , Actinina/genética , Animales , Animales Modificados Genéticamente , Tipificación del Cuerpo , Diferenciación Celular , Embrión no Mamífero , Endodermo/metabolismo , Exones , Poliadenilación , Proteína de Unión al Tracto de Polipirimidina/biosíntesis , Proteína de Unión al Tracto de Polipirimidina/genética , Isoformas de Proteínas/genética , Precursores del ARN/metabolismo , Empalme del ARN , Piel/metabolismo , Somitos/citología , Somitos/metabolismo , Xenopus laevis
19.
FEBS J ; 285(21): 3886-3908, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-29770564

RESUMEN

The human Phosphatase of Regenerative Liver (PRL) family comprises three members (PRL-1, -2, -3; gene name PTP4A1, PTP4A2, PTP4A3) that are highly expressed in a majority of cancers. This review summarizes our current understanding of PRL biology, including an overview of their evolutionary relationships and the regulatory mechanisms controlling their expression. We provide an updated view on our current knowledge on the PRL functions in solid tumors, hematological cancer, and normal physiology, particularly emphasizing on the use of in vivo mouse models. We also highlight a novel relationship positioning PRL as a central node controlling magnesium homeostasis through an association with the CNNM proteins, which are involved in magnesium transport.


Asunto(s)
Homeostasis , Regeneración Hepática , Neoplasias/enzimología , Neoplasias/patología , Oncogenes , Proteínas Tirosina Fosfatasas/metabolismo , Proteínas de Ciclo Celular/metabolismo , Humanos , Proteínas de la Membrana/metabolismo , Proteínas de Neoplasias/metabolismo
20.
PLoS One ; 12(5): e0178489, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28558026

RESUMEN

Receptor tyrosine phosphatase sigma (RPTPσ) plays an important role in the regulation of axonal outgrowth and neural regeneration. Recent studies have identified two RPTPσ ligands, chondroitin sulfate proteoglycans (CSPGs) and heparan sulfate proteoglycans (HSPG), which can modulate RPTPσ activity by affecting its dimerization status. Here, we developed a split luciferase assay to monitor RPTPσ dimerization in living cells. Using this system, we demonstrate that heparin, an analog of heparan sulfate, induced the dimerization of RPTPσ, whereas chondroitin sulfate increased RPTPσ activity by inhibiting RPTPσ dimerization. Also, we generated several novel RPTPσ IgG monoclonal antibodies, to identify one that modulates its activity by inducing/stabilizing dimerization in living cells. Lastly, we demonstrate that this antibody promotes neurite outgrowth in SH-SY5Y cells. In summary, we demonstrated that the split luciferase RPTPσ activity assay is a novel high-throughput approach for discovering novel RPTPσ modulators that can promote axonal outgrowth and neural regeneration.


Asunto(s)
Anticuerpos/inmunología , Proteínas Tirosina Fosfatasas Similares a Receptores/inmunología , Animales , Axones , Línea Celular , Humanos , Ratones , Electroforesis en Gel de Poliacrilamida Nativa
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA