Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 124
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 121(19): e2311685121, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38683994

RESUMEN

Neural crest cells exemplify cellular diversification from a multipotent progenitor population. However, the full sequence of early molecular choices orchestrating the emergence of neural crest heterogeneity from the embryonic ectoderm remains elusive. Gene-regulatory-networks (GRN) govern early development and cell specification toward definitive neural crest. Here, we combine ultradense single-cell transcriptomes with machine-learning and large-scale transcriptomic and epigenomic experimental validation of selected trajectories, to provide the general principles and highlight specific features of the GRN underlying neural crest fate diversification from induction to early migration stages using Xenopus frog embryos as a model. During gastrulation, a transient neural border zone state precedes the choice between neural crest and placodes which includes multiple converging gene programs. During neurulation, transcription factor connectome, and bifurcation analyses demonstrate the early emergence of neural crest fates at the neural plate stage, alongside an unbiased multipotent-like lineage persisting until epithelial-mesenchymal transition stage. We also decipher circuits driving cranial and vagal neural crest formation and provide a broadly applicable high-throughput validation strategy for investigating single-cell transcriptomes in vertebrate GRNs in development, evolution, and disease.


Asunto(s)
Cresta Neural , Análisis de la Célula Individual , Xenopus laevis , Animales , Cresta Neural/citología , Cresta Neural/metabolismo , Análisis de la Célula Individual/métodos , Xenopus laevis/embriología , Regulación del Desarrollo de la Expresión Génica , Movimiento Celular , Redes Reguladoras de Genes , Transcriptoma , Gastrulación , Placa Neural/metabolismo , Placa Neural/embriología , Placa Neural/citología , Transición Epitelial-Mesenquimal/genética , Embrión no Mamífero/metabolismo , Embrión no Mamífero/citología , Neurulación/genética , Neurulación/fisiología , Diferenciación Celular
2.
Development ; 148(15)2021 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-34345915

RESUMEN

The FET family of atypical RNA-binding proteins includes Fused in sarcoma (FUS), Ewing's sarcoma (EWS) and the TATA-binding protein-associate factor 15 (TAF15). FET proteins are highly conserved, suggesting specialized requirements for each protein. Fus regulates splicing of transcripts required for mesoderm differentiation and cell adhesion in Xenopus, but the roles of Ews and Taf15 remain unknown. Here, we analyze the roles of maternally deposited and zygotically transcribed Taf15, which is essential for the correct development of dorsoanterior neural tissues. By measuring changes in exon usage and transcript abundance from Taf15-depleted embryos, we found that Taf15 may regulate dorsoanterior neural development through fgfr4 and ventx2.1. Taf15 uses distinct mechanisms to downregulate Fgfr4 expression, namely retention of a single intron within fgfr4 when maternal and zygotic Taf15 is depleted, and reduction in the total fgfr4 transcript when zygotic Taf15 alone is depleted. The two mechanisms of gene regulation (post-transcriptional versus transcriptional) suggest that Taf15-mediated gene regulation is target and co-factor dependent, contingent on the milieu of factors that are present at different stages of development.


Asunto(s)
Encéfalo/metabolismo , Neurogénesis/fisiología , Neuronas/metabolismo , Proteínas de Unión al ARN/metabolismo , Factores Asociados con la Proteína de Unión a TATA/metabolismo , Xenopus/metabolismo , Animales , Encéfalo/fisiología , Diferenciación Celular/fisiología , Exones/fisiología , Femenino , Masculino , Neuronas/fisiología , Xenopus/fisiología
3.
Development ; 147(21)2020 06 22.
Artículo en Inglés | MEDLINE | ID: mdl-32467234

RESUMEN

DYRK1A [dual specificity tyrosine-(Y)-phosphorylation-regulated kinase 1 A] is a high-confidence autism risk gene that encodes a conserved kinase. In addition to autism, individuals with putative loss-of-function variants in DYRK1A exhibit microcephaly, intellectual disability, developmental delay and/or congenital anomalies of the kidney and urinary tract. DYRK1A is also located within the critical region for Down syndrome; therefore, understanding the role of DYRK1A in brain development is crucial for understanding the pathobiology of multiple developmental disorders. To characterize the function of this gene, we used the diploid frog Xenopus tropicalis We discover that Dyrk1a is expressed in ciliated tissues, localizes to ciliary axonemes and basal bodies, and is required for ciliogenesis. We also demonstrate that Dyrk1a localizes to mitotic spindles and that its inhibition leads to decreased forebrain size, abnormal cell cycle progression and cell death during brain development. These findings provide hypotheses about potential mechanisms of pathobiology and underscore the utility of X. tropicalis as a model system for understanding neurodevelopmental disorders.


Asunto(s)
Encéfalo/anatomía & histología , Cilios/metabolismo , Embrión no Mamífero/anatomía & histología , Trastornos del Neurodesarrollo/genética , Organogénesis/genética , Proteínas Serina-Treonina Quinasas/genética , Proteínas Tirosina Quinasas/genética , Proteínas de Xenopus/genética , Xenopus/embriología , Xenopus/genética , Animales , Encéfalo/embriología , Ciclo Celular/genética , Supervivencia Celular , Regulación del Desarrollo de la Expresión Génica , Predisposición Genética a la Enfermedad , Tamaño de los Órganos , Fenotipo , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Tirosina Quinasas/metabolismo , Factores de Riesgo , Huso Acromático/metabolismo , Telencéfalo/anatomía & histología , Proteínas de Xenopus/metabolismo
4.
Cell ; 134(5): 718-9, 2008 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-18775302

RESUMEN

In this issue, Inomata et al. (2008) report that the scaffold protein Olfactomedin 1 (ONT1) recruits the Tolloid proteases to their substrate Chordin, an antagonist of bone morphogenetic proteins (BMPs), during development of the frog embryo. Consequently, ONT1 expression in the organizer of the late gastrula stabilizes the gradient of BMP signaling that is essential for dorsoventral patterning.


Asunto(s)
Proteínas de la Matriz Extracelular/metabolismo , Glicoproteínas/metabolismo , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Proteínas de Xenopus/metabolismo , Xenopus/embriología , Animales , Tipificación del Cuerpo , Proteínas Morfogenéticas Óseas/metabolismo , Embrión no Mamífero/metabolismo
5.
Development ; 146(15)2019 08 09.
Artículo en Inglés | MEDLINE | ID: mdl-31285353

RESUMEN

During Xenopus gastrulation, Wnt and FGF signaling pathways cooperate to induce posterior structures. Wnt target expression around the blastopore falls into two main categories: a horseshoe shape with a dorsal gap, as in Wnt8 expression; or a ring, as in FGF8 expression. Using ChIP-seq, we show, surprisingly, that the FGF signaling mediator Ets2 binds near all Wnt target genes. However, ß-catenin preferentially binds at the promoters of genes with horseshoe patterns, but further from the promoters of genes with ring patterns. Manipulation of FGF or Wnt signaling demonstrated that 'ring' genes are responsive to FGF signaling at the dorsal midline, whereas 'horseshoe' genes are predominantly regulated by Wnt signaling. We suggest that, in the absence of active ß-catenin at the dorsal midline, the DNA-binding protein TCF binds and actively represses gene activity only when close to the promoter. In contrast, genes without functional TCF sites at the promoter may be predominantly regulated by Ets at the dorsal midline and are expressed in a ring. These results suggest recruitment of only short-range repressors to potential Wnt targets in the Xenopus gastrula.


Asunto(s)
Gástrula/embriología , Proteína Proto-Oncogénica c-ets-1/metabolismo , Proteína Proto-Oncogénica c-ets-2/metabolismo , Factores de Transcripción TCF/metabolismo , Xenopus laevis/embriología , Animales , Sitios de Unión/fisiología , Factores de Crecimiento de Fibroblastos/metabolismo , Unión Proteica/fisiología , Proteínas Wnt/metabolismo , Vía de Señalización Wnt/fisiología , Proteínas de Xenopus/metabolismo , beta Catenina/metabolismo
6.
J Evol Biol ; 35(12): 1777-1790, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36054077

RESUMEN

In many groups, sex chromosomes change frequently but the drivers of their rapid evolution are varied and often poorly characterized. With an aim of further understanding sex chromosome turnover, we investigated the polymorphic sex chromosomes of the Marsabit clawed frog, Xenopus borealis, using genomic data and a new chromosome-scale genome assembly. We confirmed previous findings that 54.1 Mb of chromosome 8L is sex-linked in animals from east Kenya and a laboratory strain, but most (or all) of this region is not sex-linked in natural populations from west Kenya. Previous work suggests possible degeneration of the Z chromosomes in the east population because many sex-linked transcripts of this female heterogametic population have female-biased expression, and we therefore expected this chromosome to not be present in the west population. In contrast, our simulations support a model where most or all of the sex-linked portion of the Z chromosome from the east acquired autosomal segregation in the west, and where much genetic variation specific to the large sex-linked portion of the W chromosome from the east is not present in the west. These recent changes are consistent with the hot-potato model, wherein sex chromosome turnover is favoured by natural selection if it purges a (minimally) degenerate sex-specific sex chromosome, but counterintuitively suggest natural selection failed to purge a Z chromosome that has signs of more advanced and possibly more ancient regulatory degeneration. These findings highlight complex evolutionary dynamics of young, rapidly evolving Xenopus sex chromosomes and set the stage for mechanistic work aimed at pinpointing additional sex-determining genes in this group.


Asunto(s)
Genómica , Cromosomas Sexuales , Masculino , Animales , Femenino , Xenopus laevis/genética , Cromosomas Sexuales/genética , Genoma , Evolución Molecular , Cromosoma X
7.
Dev Biol ; 452(1): 8-20, 2019 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-30980799

RESUMEN

The Western clawed frog Xenopus tropicalis is a diploid model system for both frog genetics and developmental biology, complementary to the paleotetraploid X. laevis. Here we report a chromosome-scale assembly of the X. tropicalis genome, improving the previously published draft genome assembly through the use of new assembly algorithms, additional sequence data, and the addition of a dense genetic map. The improved genome enables the mapping of specific traits (e.g., the sex locus or Mendelian mutants) and the characterization of chromosome-scale synteny with other tetrapods. We also report an improved annotation of the genome that integrates deep transcriptome sequence from diverse tissues and stages. The exon-intron structures of these genes are highly conserved relative to both X. laevis and human, as are chromosomal linkages ("synteny") and local gene order. A network analysis of developmental gene expression will aid future studies.


Asunto(s)
Mapeo Cromosómico , Cromosomas/genética , Perfilación de la Expresión Génica , Genoma , Anotación de Secuencia Molecular , Animales , Humanos , Xenopus
8.
PLoS Biol ; 15(10): e2004045, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-29049289

RESUMEN

During vertebrate neurulation, the embryonic ectoderm is patterned into lineage progenitors for neural plate, neural crest, placodes and epidermis. Here, we use Xenopus laevis embryos to analyze the spatial and temporal transcriptome of distinct ectodermal domains in the course of neurulation, during the establishment of cell lineages. In order to define the transcriptome of small groups of cells from a single germ layer and to retain spatial information, dorsal and ventral ectoderm was subdivided along the anterior-posterior and medial-lateral axes by microdissections. Principal component analysis on the transcriptomes of these ectoderm fragments primarily identifies embryonic axes and temporal dynamics. This provides a genetic code to define positional information of any ectoderm sample along the anterior-posterior and dorsal-ventral axes directly from its transcriptome. In parallel, we use nonnegative matrix factorization to predict enhanced gene expression maps onto early and mid-neurula embryos, and specific signatures for each ectoderm area. The clustering of spatial and temporal datasets allowed detection of multiple biologically relevant groups (e.g., Wnt signaling, neural crest development, sensory placode specification, ciliogenesis, germ layer specification). We provide an interactive network interface, EctoMap, for exploring synexpression relationships among genes expressed in the neurula, and suggest several strategies to use this comprehensive dataset to address questions in developmental biology as well as stem cell or cancer research.


Asunto(s)
Ectodermo/embriología , Cresta Neural/embriología , Neuronas/citología , Células Madre/metabolismo , Xenopus laevis/embriología , Algoritmos , Animales , Análisis por Conglomerados , Bases de Datos Genéticas , Ectodermo/metabolismo , Gastrulación/genética , Perfilación de la Expresión Génica , Regulación del Desarrollo de la Expresión Génica , Ontología de Genes , Redes Reguladoras de Genes , Humanos , Internet , Microdisección , Neoplasias/genética , Cresta Neural/metabolismo , Neurulación/genética , Análisis de Componente Principal , Factores de Tiempo , Transcriptoma/genética , Proteínas Wnt/metabolismo , Xenopus laevis/genética
9.
Cell Mol Life Sci ; 76(11): 2185-2198, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-30729254

RESUMEN

RNA alternative polyadenylation contributes to the complexity of information transfer from genome to phenome, thus amplifying gene function. Here, we report the first X. tropicalis resource with 127,914 alternative polyadenylation (APA) sites derived from embryos and adults. Overall, APA networks play central roles in coordinating the maternal-zygotic transition (MZT) in embryos, sexual dimorphism in adults and longitudinal growth from embryos to adults. APA sites coordinate reprogramming in embryos before the MZT, but developmental events after the MZT due to zygotic genome activation. The APA transcriptomes of young adults are more variable than growing adults and male frog APA transcriptomes are more divergent than females. The APA profiles of young females were similar to embryos before the MZT. Enriched pathways in developing embryos were distinct across the MZT and noticeably segregated from adults. Briefly, our results suggest that the minimal functional units in genomes are alternative transcripts as opposed to genes.


Asunto(s)
Proteínas Anfibias/genética , Genoma , ARN Mensajero/genética , Caracteres Sexuales , Transcriptoma , Xenopus/genética , Proteínas Anfibias/metabolismo , Animales , Embrión no Mamífero , Desarrollo Embrionario , Femenino , Perfilación de la Expresión Génica , Regulación del Desarrollo de la Expresión Génica , Ontología de Genes , Masculino , Anotación de Secuencia Molecular , Poliadenilación , ARN Mensajero/metabolismo , Factores Sexuales , Secuenciación del Exoma , Xenopus/crecimiento & desarrollo , Xenopus/metabolismo , Cigoto/crecimiento & desarrollo , Cigoto/metabolismo
10.
Proc Natl Acad Sci U S A ; 114(1): 101-106, 2017 01 03.
Artículo en Inglés | MEDLINE | ID: mdl-27986952

RESUMEN

To define a complete catalog of the genes that are activated during mouse sclerotome formation, we sequenced RNA from embryonic mouse tissue directed to form sclerotome in culture. In addition to well-known early markers of sclerotome, such as Pax1, Pax9, and the Bapx2/Nkx3-2 homolog Nkx3-1, the long-noncoding RNA PEAT (Pax1 enhancer antisense transcript) was induced in sclerotome-directed samples. Strikingly, PEAT is located just upstream of the Pax1 gene. Using CRISPR/Cas9, we generated a mouse line bearing a complete deletion of the PEAT-transcribed unit. RNA-seq on PEAT mutant embryos showed that loss of PEAT modestly increases bone morphogenetic protein target gene expression and also elevates the expression of a large subset of ribosomal protein mRNAs.


Asunto(s)
Desarrollo Embrionario/genética , Regulación del Desarrollo de la Expresión Génica/genética , Factores de Transcripción Paired Box/genética , ARN Largo no Codificante/genética , ARN Ribosómico/biosíntesis , Proteínas Ribosómicas/biosíntesis , Animales , Proteínas Morfogenéticas Óseas/biosíntesis , Sistemas CRISPR-Cas/genética , Mesodermo/embriología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Factores de Transcripción Paired Box/biosíntesis , Proteínas Ribosómicas/genética , Eliminación de Secuencia/genética
11.
Genes Dev ; 26(12): 1351-63, 2012 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-22713872

RESUMEN

Here we investigated the function of the atypical RNA-binding protein fus/TLS (fused in sarcoma/translocated in sarcoma) during early frog development. We found that fus is necessary for proper mRNA splicing of a set of developmental regulatory genes during early frog development and gastrulation. Upon fus knockdown, embryos fail to gastrulate and show mesodermal differentiation defects that we connect to intron retention in fgf8 (fibroblast growth factor 8) and fgfr2 (fgf receptor 2) transcripts. During gastrulation, the animal and marginal regions dissociate, and we show that this is caused, at least in part, by intron retention in cdh1 transcripts. We confirm the specificity of splicing defects at a genomic level using analysis of RNA sequencing (RNA-seq) and show that 3%-5% of all transcripts display intron retention throughout the pre-mRNA. By analyzing gene ontology slim annotations, we show that the affected genes are enriched for developmental regulators and therefore represent a biologically coherent set of targets for fus regulation in embryogenesis. This shows that fus is central to embryogenesis and may provide information on its function in neurodegenerative disease.


Asunto(s)
Gastrulación/genética , Genes Reguladores/genética , Empalme del ARN/genética , Proteínas de Unión al ARN/metabolismo , Proteínas de Xenopus/metabolismo , Xenopus laevis/embriología , Xenopus laevis/genética , Animales , Cadherinas/metabolismo , Adhesión Celular/efectos de los fármacos , Diferenciación Celular/efectos de los fármacos , Diferenciación Celular/genética , Epitelio/efectos de los fármacos , Epitelio/metabolismo , Epitelio/patología , Factores de Crecimiento de Fibroblastos/metabolismo , Gastrulación/efectos de los fármacos , Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos , Técnicas de Silenciamiento del Gen , Genes del Desarrollo/genética , Intrones/genética , Mesodermo/efectos de los fármacos , Mesodermo/embriología , Mesodermo/metabolismo , Mesodermo/patología , Oligonucleótidos Antisentido/farmacología , Fenotipo , Empalme del ARN/efectos de los fármacos , ARN Mensajero/genética , ARN Mensajero/metabolismo , Proteínas de Unión al ARN/química , Proteínas de Unión al ARN/genética , Análisis de Secuencia de ARN , Proteínas de Xenopus/química , Proteínas de Xenopus/genética
12.
Dev Biol ; 442(2): 276-287, 2018 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-30096282

RESUMEN

Microtubule remodeling is critical for cellular and developmental processes underlying morphogenetic changes and for the formation of many subcellular structures. Katanins are conserved microtubule severing enzymes that are essential for spindle assembly, ciliogenesis, cell division, and cellular motility. We have recently shown that a related protein, Katanin-like 2 (KATNAL2), is similarly required for cytokinesis, cell cycle progression, and ciliogenesis in cultured mouse cells. However, its developmental expression pattern, localization, and in vivo role during organogenesis have yet to be characterized. Here, we used Xenopus embryos to reveal that Katnal2 (1) is expressed broadly in ciliated and neurogenic tissues throughout embryonic development; (2) is localized to basal bodies, ciliary axonemes, centrioles, and mitotic spindles; and (3) is required for ciliogenesis and brain development. Since human KATNAL2 is a risk gene for autism spectrum disorders, our functional data suggest that Xenopus may be a relevant system for understanding the relationship of mutations in this gene to autism and the underlying molecular mechanisms of pathogenesis.


Asunto(s)
Encéfalo/embriología , Encéfalo/metabolismo , Katanina/metabolismo , Animales , Ciclo Celular/fisiología , División Celular/fisiología , Cilios/metabolismo , Embrión no Mamífero , Desarrollo Embrionario , Microtúbulos/metabolismo , Huso Acromático/metabolismo , Xenopus/embriología , Xenopus/metabolismo , Proteínas de Xenopus/metabolismo
13.
Dev Biol ; 426(2): 165-175, 2017 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-27091726

RESUMEN

The canonical Wnt/ß-catenin signaling pathway plays multiple roles during Xenopus gastrulation, including posteriorization of the neural plate, patterning of the mesoderm, and induction of the neural crest. Wnt signaling stabilizes ß-catenin, which then activates target genes. However, few targets of this signaling pathway that mediate early developmental processes are known. Here we sought to identify transcriptional targets of the Wnt/ß-catenin signaling pathway using a genome-wide approach. We selected putative targets using the criteria of reduced expression upon zygotic Wnt knockdown, ß-catenin binding within 50kb of the gene, and expression in tissues that receive Wnt signaling. Using these criteria, we found 21 novel direct transcriptional targets of Wnt/ß-catenin signaling during gastrulation and in addition have identified putative regulatory elements for further characterization in future studies.


Asunto(s)
Gástrula/metabolismo , Gastrulación/genética , Vía de Señalización Wnt , Xenopus laevis/embriología , Animales , Sitios de Unión , Blastómeros/metabolismo , Inmunoprecipitación de Cromatina , Embrión no Mamífero/metabolismo , Regulación del Desarrollo de la Expresión Génica , Péptidos y Proteínas de Señalización Intercelular/genética , Péptidos y Proteínas de Señalización Intercelular/fisiología , Mesodermo/metabolismo , Cresta Neural/metabolismo , Tubo Neural/metabolismo , Oligopéptidos , ARN Mensajero/genética , Proteínas Recombinantes/metabolismo , Transcripción Genética , Proteínas de Xenopus/genética , Proteínas de Xenopus/metabolismo , Proteínas de Xenopus/fisiología , Xenopus laevis/genética , beta Catenina/metabolismo
14.
Dev Biol ; 425(1): 33-43, 2017 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-28322736

RESUMEN

The embryonic precursor of the vertebrate central nervous system, the neural plate, is patterned along the anterior-posterior axis and shaped by morphogenetic movements early in development. We previously identified the genes sall1 and sall4, known regulators of pluripotency in other contexts, as transcriptional targets of developmental signaling pathways that regulate neural development. Here, we demonstrate that these two genes are required for induction of posterior neural fates, the cell shape changes that contribute to neural tube closure, and later neurogenesis. Upon sall1 or sall4 knockdown, defects are associated with the failure of the neural plate to differentiate. Consistent with this, sall-deficient neural tissue exhibits an aberrant upregulation of pou5f3 family genes, the Xenopus homologs of the mammalian stem cell maintenance factor Pou5f1 (Oct4). Furthermore, overexpression of pou5f3 genes in Xenopus causes defects in neural patterning, morphogenesis, and differentiation that phenocopy those observed in sall1 and sall4 morphants. In all, this work shows that both sall1 and sall4 act to repress pou5f3 family gene expression in the neural plate, thereby allowing vertebrate neural development to proceed.


Asunto(s)
Placa Neural/metabolismo , Factor 3 de Transcripción de Unión a Octámeros/genética , Factores de Transcripción/genética , Proteínas de Xenopus/genética , Xenopus laevis/genética , Animales , Tipificación del Cuerpo/genética , Diferenciación Celular/genética , Embrión no Mamífero/embriología , Embrión no Mamífero/metabolismo , Femenino , Regulación del Desarrollo de la Expresión Génica , Técnicas de Silenciamiento del Gen , Hibridación in Situ , Microscopía Confocal , Morfogénesis/genética , Placa Neural/embriología , Neurulación/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Xenopus laevis/embriología
15.
Dev Biol ; 426(2): 245-254, 2017 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-27364468

RESUMEN

The dorsal ventral axis of vertebrates requires high BMP activity for ventral development and inhibition of BMP activity for dorsal development. Presumptive dorsal regions of the embryo are protected from the ventralizing activity of BMPs by the secretion of BMP antagonists from the mesoderm. Noggin, one such antagonist, binds BMP ligands and prevents them from binding their receptors, however, a unique role for Noggin in amphibian development has remained unclear. Previously, we used zinc-finger nucleases to mutagenize the noggin locus in Xenopus tropicalis. Here, we report on the phenotype of noggin mutant frogs as a result of breeding null mutations to homozygosity. Early homozygous noggin mutant embryos are indistinguishable from wildtype siblings, with normal neural induction and neural tube closure. However, in late tadpole stages mutants present severe ventral craniofacial defects, notably a fusion of Meckel's cartilage to the palatoquadrate cartilage. Consistent with a noggin loss-of-function, mutants show expansions of BMP target gene expression and the mutant phenotype can be rescued with transient BMP inhibition. These results demonstrate that in amphibians, Noggin is dispensable for early embryonic patterning but is critical for cranial skeletogenesis.


Asunto(s)
Región Branquial/crecimiento & desarrollo , Proteínas Portadoras/fisiología , Proteínas de Xenopus/fisiología , Xenopus/crecimiento & desarrollo , Alelos , Animales , Tipificación del Cuerpo , Proteínas Morfogenéticas Óseas/farmacología , Proteínas Morfogenéticas Óseas/fisiología , Proteínas Portadoras/genética , Cartílago/anomalías , Diferenciación Celular , Embrión no Mamífero/metabolismo , Embrión no Mamífero/ultraestructura , Folistatina/deficiencia , Folistatina/genética , Técnicas de Inactivación de Genes , Glicoproteínas/deficiencia , Glicoproteínas/genética , Homocigoto , Péptidos y Proteínas de Señalización Intercelular/deficiencia , Péptidos y Proteínas de Señalización Intercelular/genética , Larva , Mandíbula/anomalías , Morfolinos/farmacología , Cráneo/anomalías , Xenopus/embriología , Proteínas de Xenopus/deficiencia , Proteínas de Xenopus/genética
16.
Development ; 142(6): 1169-79, 2015 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-25758226

RESUMEN

The articular cartilage, which lines the joints of the limb skeleton, is distinct from the adjoining transient cartilage, and yet, it differentiates as a unique population within a contiguous cartilage element. Current literature suggests that articular cartilage and transient cartilage originate from different cell populations. Using a combination of lineage tracing and pulse-chase of actively proliferating chondrocytes, we here demonstrate that, similar to transient cartilage, embryonic articular cartilage cells also originate from the proliferating chondrocytes situated near the distal ends of skeletal anlagen. We show that nascent cartilage cells are capable of differentiating as articular or transient cartilage, depending on exposure to Wnt or BMP signaling, respectively. The spatial organization of the articular cartilage results from a band of Nog-expressing cells, which insulates these proliferating chondrocytes from BMP signaling and allows them to differentiate as articular cartilage under the influence of Wnt signaling emanating from the interzone. Through experiments conducted in both chick and mouse embryos we have developed a model explaining simultaneous growth and differentiation of transient and articular cartilage in juxtaposed domains.


Asunto(s)
Proteínas Morfogenéticas Óseas/metabolismo , Proteínas Portadoras/metabolismo , Cartílago Articular/embriología , Linaje de la Célula/fisiología , Transducción de Señal/fisiología , Azul Alcián , Animales , Cartílago Articular/citología , Diferenciación Celular/fisiología , Proliferación Celular/fisiología , Embrión de Pollo , Condrocitos/metabolismo , Condrocitos/fisiología , Inmunohistoquímica , Hibridación in Situ , Ratones , Ratones Transgénicos , Proteínas Wnt/metabolismo
18.
Cells Tissues Organs ; 205(5-6): 279-292, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30300884

RESUMEN

Na+/H+ exchangers (NHEs) represent a highly conserved family of ion transporters that regulate pH homeostasis. NHEs as well as other proton transporters were previously linked to the regulation of the Wnt signaling pathway, cell polarity signaling, and mucociliary function. Furthermore, mutations in the gene SLC9A3 (encoding NHE3) were detected as additional risk factors for airway infections in cystic fibrosis patients. Here, we used the Xenopus embryonic mucociliary epidermis as well as human airway epithelial cells (HAECs) as models to investigate the functional roles of NHEs in mucociliary development and regeneration. In Xenopus embryos, NHEs 1-3 were expressed during epidermal development, and loss of NHE function impaired mucociliary clearance in tadpoles. Clearance defects were caused by reduced cilia formation, disrupted alignment of basal bodies in multiciliated cells (MCCs), and dysregulated mucociliary gene expression. These data also suggested that NHEs may contribute to the activation of Wnt signaling in mucociliary epithelia. In HAECs, pharmacological inhibition of NHE function also caused defective ciliation and regeneration in airway MCCs. Collectively, our data revealed a requirement for NHEs in vertebrate mucociliary epithelia and linked NHE activity to cilia formation and function in differentiating MCCs. Our results provide an entry point for the understanding of the contribution of NHEs to signaling, development, and pathogenesis in the human respiratory tract.


Asunto(s)
Epitelio/embriología , Epitelio/metabolismo , Intercambiadores de Sodio-Hidrógeno/metabolismo , Animales , Células Cultivadas , Epitelio/ultraestructura , Humanos , Intercambiador 3 de Sodio-Hidrógeno/metabolismo , Vía de Señalización Wnt , Xenopus/embriología , Xenopus/metabolismo
19.
Development ; 141(8): 1683-93, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24715458

RESUMEN

Amphibian neural development occurs as a two-step process: (1) induction specifies a neural fate in undifferentiated ectoderm; and (2) transformation induces posterior spinal cord and hindbrain. Signaling through the Fgf, retinoic acid (RA) and Wnt/ß-catenin pathways is necessary and sufficient to induce posterior fates in the neural plate, yet a mechanistic understanding of the process is lacking. Here, we screened for factors enriched in posterior neural tissue and identify spalt-like 4 (sall4), which is induced by Fgf. Knockdown of Sall4 results in loss of spinal cord marker expression and increased expression of pou5f3.2 (oct25), pou5f3.3 (oct60) and pou5f3.1 (oct91) (collectively, pou5f3 genes), the closest Xenopus homologs of mammalian stem cell factor Pou5f1 (Oct4). Overexpression of the pou5f3 genes results in the loss of spinal cord identity and knockdown of pou5f3 function restores spinal cord marker expression in Sall4 morphants. Finally, knockdown of Sall4 blocks the posteriorizing effects of Fgf and RA signaling in the neurectoderm. These results suggest that Sall4, activated by posteriorizing signals, represses the pou5f3 genes to provide a permissive environment allowing for additional Wnt/Fgf/RA signals to posteriorize the neural plate.


Asunto(s)
Tipificación del Cuerpo , Linaje de la Célula , Neuronas/citología , Proteínas Represoras/metabolismo , Factores de Transcripción/metabolismo , Proteínas de Xenopus/metabolismo , Xenopus laevis/metabolismo , Animales , Biomarcadores/metabolismo , Tipificación del Cuerpo/genética , Diferenciación Celular/genética , Linaje de la Célula/efectos de los fármacos , Linaje de la Célula/genética , Embrión no Mamífero/efectos de los fármacos , Embrión no Mamífero/metabolismo , Factores de Crecimiento de Fibroblastos/farmacología , Regulación del Desarrollo de la Expresión Génica , Técnicas de Silenciamiento del Gen , Pruebas Genéticas , Morfolinos/farmacología , Placa Neural/metabolismo , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Proteínas Represoras/genética , Rombencéfalo/metabolismo , Médula Espinal/citología , Médula Espinal/efectos de los fármacos , Médula Espinal/embriología , Factores de Transcripción/genética , Transcripción Genética , Tretinoina/farmacología , Vía de Señalización Wnt/efectos de los fármacos , Vía de Señalización Wnt/genética , Proteínas de Xenopus/genética , Xenopus laevis/embriología , Xenopus laevis/genética
20.
Proc Natl Acad Sci U S A ; 111(17): 6329-34, 2014 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-24722637

RESUMEN

A forward genetic screen of N-ethyl-N-nitrosourea mutagenized Xenopus tropicalis has identified an inner ear mutant named eclipse (ecl). Mutants developed enlarged otic vesicles and various defects of otoconia development; they also showed abnormal circular and inverted swimming patterns. Positional cloning identified specificity protein 8 (sp8), which was previously found to regulate limb and brain development. Two different loss-of-function approaches using transcription activator-like effector nucleases and morpholino oligonucleotides confirmed that the ecl mutant phenotype is caused by down-regulation of sp8. Depletion of sp8 resulted in otic dysmorphogenesis, such as uncompartmentalized and enlarged otic vesicles, epithelial dilation with abnormal sensory end organs. When overexpressed, sp8 was sufficient to induce ectopic otic vesicles possessing sensory hair cells, neurofilament innervation in a thickened sensory epithelium, and otoconia, all of which are found in the endogenous otic vesicle. We propose that sp8 is an important factor for initiation and elaboration of inner ear development.


Asunto(s)
Oído/embriología , Factores de Transcripción/metabolismo , Proteínas de Xenopus/metabolismo , Animales , Secuencia de Bases , Biomarcadores/metabolismo , Oído Interno/embriología , Oído Interno/metabolismo , Embrión no Mamífero/metabolismo , Endonucleasas/metabolismo , Regulación del Desarrollo de la Expresión Génica , Datos de Secuencia Molecular , Morfolinos/farmacología , Mutación/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , Transactivadores/metabolismo , Factores de Transcripción/genética , Xenopus/embriología , Xenopus/metabolismo , Proteínas de Xenopus/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA