Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
J Cell Sci ; 130(1): 23-38, 2017 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-27505891

RESUMEN

Life is driven by a set of biological events that are naturally dynamic and tightly orchestrated from the single molecule to entire organisms. Although biochemistry and molecular biology have been essential in deciphering signaling at a cellular and organismal level, biological imaging has been instrumental for unraveling life processes across multiple scales. Imaging methods have considerably improved over the past decades and now allow to grasp the inner workings of proteins, organelles, cells, organs and whole organisms. Not only do they allow us to visualize these events in their most-relevant context but also to accurately quantify underlying biomechanical features and, so, provide essential information for their understanding. In this Commentary, we review a palette of imaging (and biophysical) methods that are available to the scientific community for elucidating a wide array of biological events. We cover the most-recent developments in intravital imaging, light-sheet microscopy, super-resolution imaging, and correlative light and electron microscopy. In addition, we illustrate how these technologies have led to important insights in cell biology, from the molecular to the whole-organism resolution. Altogether, this review offers a snapshot of the current and state-of-the-art imaging methods that will contribute to the understanding of life and disease.


Asunto(s)
Biología Celular , Imagenología Tridimensional , Análisis Espacio-Temporal , Animales , Humanos , Microscopía Electrónica , Microscopía Fluorescente , Modelos Biológicos
2.
Int J Mol Sci ; 20(17)2019 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-31461928

RESUMEN

A platinum (II) complex stabilized by a pyridine and an N-heterocyclic carbene ligand featuring an anthracenyl moiety was prepared. The compound was fully characterized and its molecular structure was determined by single-crystal X-ray diffraction. The compound demonstrated high in vitro antiproliferative activities against cancer cell lines with IC50 ranging from 10 to 80 nM. The presence of the anthracenyl moiety on the N-heterocyclic carbene (NHC) Pt complex was used as a luminescent tag to probe the metal interaction with the nucleobases of the DNA through a pyridine-nucleobase ligand exchange. Such interaction of the platinum complex with DNA was corroborated by optical tweezers techniques and liquid phase atomic force microscopy (AFM). The results revealed a two-state interaction between the platinum complex and the DNA strands. This two-state behavior was quantified from the different experiments due to contour length variations. At 24 h incubation, the stretching curves revealed multiple structural breakages, and AFM imaging revealed a highly compact and dense structure of platinum complexes bridging the DNA strands.


Asunto(s)
Antineoplásicos/química , ADN/química , Compuestos Organoplatinos/química , Antracenos/química , Antineoplásicos/farmacología , Proliferación Celular/efectos de los fármacos , ADN/metabolismo , Células HCT116 , Humanos , Células MCF-7 , Pinzas Ópticas , Compuestos Organoplatinos/farmacología , Células PC-3
3.
Chemistry ; 24(18): 4662-4670, 2018 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-29369435

RESUMEN

One key challenge in the fields of nanomedicine and tissue engineering is the design of theranostic nanoplatforms able to monitor their therapeutic effect by imaging. Among current developed nano-objects, carbon nanotubes (CNTs) were found suitable to combine imaging, photothermal therapy, and to be loaded with hydrophobic drugs. However, a main problem is their resulting low hydrophilicity. To face this problem, an innovative method is developed here, which consists in loading the surface of carbon nanotubes (CNTs) with drugs followed by a protein coating around them. The originality of this method relies on first covering CNTs with a sacrificial template mesoporous silica (MS) shell grafted with isobutyramide (IBAM) binders on which a protein nanofilm is strongly adhered through IBAM-mediated physical cross-linking. This concept is first demonstrated without drugs, and is further improved with the suitable loading of hydrophobic drugs, curcumin (CUR) and camptothecin (CPT), which are retained between the CNTs and human serum albumin (HSA) layer. Such novel nanocomposites with favorable photothermal properties are very promising for theranostic systems, drug delivery, and phototherapy applications.


Asunto(s)
Nanotubos de Carbono/química , Proteínas/química , Dióxido de Silicio/química , Amidas/química , Camptotecina/química , Curcumina/química , Sistemas de Liberación de Medicamentos , Humanos , Nanocompuestos/química , Nanomedicina , Fototerapia/métodos , Albúmina Sérica Humana/metabolismo , Nanomedicina Teranóstica
4.
Development ; 140(21): 4426-34, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-24089470

RESUMEN

Pulsatile flow is a universal feature of the blood circulatory system in vertebrates and can lead to diseases when abnormal. In the embryo, blood flow forces stimulate vessel remodeling and stem cell proliferation. At these early stages, when vessels lack muscle cells, the heart is valveless and the Reynolds number (Re) is low, few details are available regarding the mechanisms controlling pulses propagation in the developing vascular network. Making use of the recent advances in optical-tweezing flow probing approaches, fast imaging and elastic-network viscous flow modeling, we investigated the blood-flow mechanics in the zebrafish main artery and show how it modifies the heart pumping input to the network. The movement of blood cells in the embryonic artery suggests that elasticity of the network is an essential factor mediating the flow. Based on these observations, we propose a model for embryonic blood flow where arteries act like a capacitor in a way that reduces heart effort. These results demonstrate that biomechanics is key in controlling early flow propagation and argue that intravascular elasticity has a role in determining embryonic vascular function.


Asunto(s)
Arterias/embriología , Embrión no Mamífero/fisiología , Hemodinámica/fisiología , Modelos Biológicos , Flujo Pulsátil/fisiología , Pez Cebra/embriología , Animales , Fenómenos Biomecánicos , Viscosidad Sanguínea , Microscopía Confocal , Pinzas Ópticas , Grabación en Video
5.
Adv Healthc Mater ; 13(15): e2304250, 2024 06.
Artículo en Inglés | MEDLINE | ID: mdl-38444191

RESUMEN

Nanoparticle (NP) surface functionalization with proteins, including monoclonal antibodies (mAbs), mAb fragments, and various peptides, has emerged as a promising strategy to enhance tumor targeting specificity and immune cell interaction. However, these methods often rely on complex chemistry and suffer from batch-dependent outcomes, primarily due to limited control over the protein orientation and quantity on NP surfaces. To address these challenges, a novel approach based on the supramolecular assembly of two peptides is presented to create a heterotetramer displaying VHHs on NP surfaces. This approach effectively targets both tumor-associated antigens (TAAs) and immune cell-associated antigens. In vitro experiments showcase its versatility, as various NP types are biofunctionalized, including liposomes, PLGA NPs, and ultrasmall silica-based NPs, and the VHHs targeting of known TAAs (HER2 for breast cancer, CD38 for multiple myeloma), and an immune cell antigen (NKG2D for natural killer (NK) cells) is evaluated. In in vivo studies using a HER2+ breast cancer mouse model, the approach demonstrates enhanced tumor uptake, retention, and penetration compared to the behavior of nontargeted analogs, affirming its potential for diverse applications.


Asunto(s)
Nanopartículas , Péptidos , Nanopartículas/química , Animales , Humanos , Ratones , Péptidos/química , Línea Celular Tumoral , Femenino , Antígenos de Neoplasias/inmunología , Antígenos de Neoplasias/química , Antígenos de Neoplasias/metabolismo , Receptor ErbB-2/inmunología , Receptor ErbB-2/metabolismo , Neoplasias de la Mama/metabolismo
6.
Adv Mater ; 36(13): e2308738, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38105299

RESUMEN

Subcutaneous (SC) administration of monoclonal antibodies (mAbs) is a proven strategy for improving therapeutic outcomes and patient compliance. The current FDA-/EMA-approved enzymatic approach, utilizing recombinant human hyaluronidase (rHuPH20) to enhance mAbs SC delivery, involves degrading the extracellular matrix's hyaluronate to increase tissue permeability. However, this method lacks tunable release properties, requiring individual optimization for each mAb. Seeking alternatives, physical polysaccharide hydrogels emerge as promising candidates due to their tunable physicochemical and biodegradability features. Unfortunately, none have demonstrated simultaneous biocompatibility, biodegradability, and controlled release properties for large proteins (≥150 kDa) after SC delivery in clinical settings. Here, a novel two-component hydrogel comprising chitosan and chitosan@DOTAGA is introduced that can be seamlessly mixed with sterile mAbs formulations initially designed for intravenous (IV) administration, repurposing them as novel tunable SC formulations. Validated in mice and nonhuman primates (NHPs) with various mAbs, including trastuzumab and rituximab, the hydrogel exhibited biodegradability and biocompatibility features. Pharmacokinetic studies in both species demonstrated tunable controlled release, surpassing the capabilities of rHuPH20, with comparable parameters to the rHuPH20+mAbs formulation. These findings signify the potential for rapid translation to human applications, opening avenues for the clinical development of this novel SC biosimilar formulation.


Asunto(s)
Anticuerpos Monoclonales , Quitosano , Humanos , Ratones , Animales , Anticuerpos Monoclonales/farmacocinética , Hidrogeles , Preparaciones de Acción Retardada , Inyecciones Subcutáneas
7.
Pharmaceutics ; 15(4)2023 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-37111590

RESUMEN

Functionalized iron oxide nanoparticles (IONPs) are increasingly being designed as a theranostic nanoplatform combining specific targeting, diagnosis by magnetic resonance imaging (MRI), and multimodal therapy by hyperthermia. The effect of the size and the shape of IONPs is of tremendous importance to develop theranostic nanoobjects displaying efficient MRI contrast agents and hyperthermia agent via the combination of magnetic hyperthermia (MH) and/or photothermia (PTT). Another key parameter is that the amount of accumulation of IONPs in cancerous cells is sufficiently high, which often requires the grafting of specific targeting ligands (TLs). Herein, IONPs with nanoplate and nanocube shapes, which are promising to combine magnetic hyperthermia (MH) and photothermia (PTT), were synthesized by the thermal decomposition method and coated with a designed dendron molecule to ensure their biocompatibility and colloidal stability in suspension. Then, the efficiency of these dendronized IONPs as contrast agents (CAs) for MRI and their ability to heat via MH or PTT were investigated. The 22 nm nanospheres and the 19 nm nanocubes presented the most promising theranostic properties (respectively, r2 = 416 s-1·mM-1, SARMH = 580 W·g-1, SARPTT = 800 W·g-1; and r2 = 407 s-1·mM-1, SARMH = 899 W·g-1, SARPTT = 300 W·g-1). MH experiments have proven that the heating power mainly originates from Brownian relaxation and that SAR values can remain high if IONPs are prealigned with a magnet. This raises hope that heating will maintain efficient even in a confined environment, such as in cells or in tumors. Preliminary in vitro MH and PTT experiments have shown the promising effect of the cubic shaped IONPs, even though the experiments should be repeated with an improved set-up. Finally, the grafting of a specific peptide (P22) as a TL for head and neck cancers (HNCs) has shown the positive impact of the TL to enhance IONP accumulation in cells.

8.
Elife ; 112022 07 28.
Artículo en Inglés | MEDLINE | ID: mdl-35899947

RESUMEN

Directional cell locomotion requires symmetry breaking between the front and rear of the cell. In some cells, symmetry breaking manifests itself in a directional flow of actin from the front to the rear of the cell. Many cells, especially in physiological 3D matrices, do not show such coherent actin dynamics and present seemingly competing protrusion/retraction dynamics at their front and back. How symmetry breaking manifests itself for such cells is therefore elusive. We take inspiration from the scallop theorem proposed by Purcell for micro-swimmers in Newtonian fluids: self-propelled objects undergoing persistent motion at low Reynolds number must follow a cycle of shape changes that breaks temporal symmetry. We report similar observations for cells crawling in 3D. We quantified cell motion using a combination of 3D live cell imaging, visualization of the matrix displacement, and a minimal model with multipolar expansion. We show that our cells embedded in a 3D matrix form myosin-driven force dipoles at both sides of the nucleus, that locally and periodically pinch the matrix. The existence of a phase shift between the two dipoles is required for directed cell motion which manifests itself as cycles with finite area in the dipole-quadrupole diagram, a formal equivalence to the Purcell cycle. We confirm this mechanism by triggering local dipolar contractions with a laser. This leads to directed motion. Our study reveals that these cells control their motility by synchronizing dipolar forces distributed at front and back. This result opens new strategies to externally control cell motion as well as for the design of micro-crawlers.


Asunto(s)
Actinas , Polaridad Celular , Actinas/metabolismo , Movimiento Celular/fisiología , Núcleo Celular/metabolismo , Polaridad Celular/fisiología , Miosinas/metabolismo
9.
Methods Mol Biol ; 2294: 111-132, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33742397

RESUMEN

Cancer metastasis is a multistep process during which tumor cells leave the primary tumor mass and form distant secondary colonies that are lethal. Circulating tumor cells (CTCs) are transported by body fluids to reach distant organs, where they will extravasate and either remain dormant or form new tumor foci. Development of methods to study the behavior of CTCs at the late stages of the intravascular journey is thus required to dissect the molecular mechanisms at play. Using recently developed microfluidics approaches, we have demonstrated that CTCs arrest intravascularly, through a two-step process: (a) CTCs stop using low energy and rapidly activated adhesion receptors to form transient metastable adhesions and (b) CTCs stabilize their adhesions to the endothelial layer with high energy and slowly activated adhesion receptors. In this methods chapter, we describe these easy-to-implement quantitative methods using commercially available microfluidic channels. We detail the use of fast live imaging combined to fine-tuned perfusion to measure the adhesion potential of CTC depending on flow velocities. We document how rapidly engaged early metastable adhesion can be discriminated from slower activated stable adhesion using microfluidics. Finally, CTC extravasation potential can be assessed within this setup using long-term cell culture under flow. Altogether, this experimental pipeline can be adapted to probe the adhesion (to the endothelial layer) and extravasation potential of any circulating cell.


Asunto(s)
Adhesión Celular , Ensayos de Migración Celular/métodos , Microfluídica/métodos , Células Neoplásicas Circulantes/metabolismo , Migración Transendotelial y Transepitelial , Animales , Línea Celular Tumoral , Ensayos de Migración Celular/instrumentación , Humanos , Microfluídica/instrumentación
10.
Dev Cell ; 56(2): 164-179, 2021 01 25.
Artículo en Inglés | MEDLINE | ID: mdl-33238151

RESUMEN

The most dangerous aspect of cancer lies in metastatic progression. Tumor cells will successfully form life-threatening metastases when they undergo sequential steps along a journey from the primary tumor to distant organs. From a biomechanics standpoint, growth, invasion, intravasation, circulation, arrest/adhesion, and extravasation of tumor cells demand particular cell-mechanical properties in order to survive and complete the metastatic cascade. With metastatic cells usually being softer than their non-malignant counterparts, high deformability for both the cell and its nucleus is thought to offer a significant advantage for metastatic potential. However, it is still unclear whether there is a finely tuned but fixed mechanical state that accommodates all mechanical features required for survival throughout the cascade or whether tumor cells need to dynamically refine their properties and intracellular components at each new step encountered. Here, we review the various mechanical requirements successful cancer cells might need to fulfill along their journey and speculate on the possibility that they dynamically adapt their properties accordingly. The mechanical signature of a successful cancer cell might actually be its ability to adapt to the successive microenvironmental constraints along the different steps of the journey.


Asunto(s)
Adhesión Celular , Movimiento Celular , Mecanotransducción Celular , Neoplasias/patología , Animales , Fenómenos Biomecánicos , Humanos , Metástasis de la Neoplasia
11.
Med Sci (Paris) ; 36(10): 872-878, 2020 Oct.
Artículo en Francés | MEDLINE | ID: mdl-33026329

RESUMEN

Metastases are the main cause of cancer-related deaths. The chain of events leading to their development is called "the metastatic cascade". The biological and biochemical aspects of this process have been well studied but the importance of biomechanical parameters only recently became a focus in the field. Studies have shown the biological fluids (blood, lymph and interstitial fluid) to play a key role in the metastatic cascade. These fluids participate in the transport of circulating tumor cells (CTCs) as well as the factors that they secrete, while at the same time influencing the events of the metastatic cascade through the forces that they generate. The hemodynamic properties and topological constraints of the vascular architecture control the formation of metastatic niches and the metastatic potential of tumor cells. In this review, we discuss the importance of these mechanical forces and highlight the novel questions and research avenues that they open.


TITLE: Influence de la mécanique des fluides sur la formation des métastases. ABSTRACT: La suite d'évènements menant à l'apparition de métastases est appelée « cascade métastatique ¼. L'étude récente de la composante biomécanique de cette cascade a révélé le rôle central des liquides biologiques dans la dissémination métastatique. Tout en participant au transport des cellules tumorales circulantes et des facteurs qu'elles sécrètent, ces liquides circulants influencent cette cascade par les forces mécaniques qu'ils génèrent. Les propriétés hémodynamiques et les contraintes topologiques de l'architecture vasculaire contrôlent la formation de niches métastatiques et le potentiel métastatique des cellules tumorales.


Asunto(s)
Líquido Extracelular/fisiología , Hidrodinámica , Metástasis de la Neoplasia/patología , Metástasis de la Neoplasia/fisiopatología , Células Neoplásicas Circulantes/patología , Fenómenos Biomecánicos , Líquido Extracelular/química , Humanos , Microambiente Tumoral/fisiología
12.
Nat Rev Cancer ; 20(2): 107-124, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31780785

RESUMEN

Metastasis is a dynamic succession of events involving the dissemination of tumour cells to distant sites within the body, ultimately reducing the survival of patients with cancer. To colonize distant organs and, therefore, systemically disseminate within the organism, cancer cells and associated factors exploit several bodily fluid systems, which provide a natural transportation route. Indeed, the flow mechanics of the blood and lymphatic circulatory systems can be co-opted to improve the efficiency of cancer cell transit from the primary tumour, extravasation and metastatic seeding. Flow rates, vessel size and shear stress can all influence the survival of cancer cells in the circulation and control organotropic seeding patterns. Thus, in addition to using these fluids as a means to travel throughout the body, cancer cells exploit the underlying physical forces within these fluids to successfully seed distant metastases. In this Review, we describe how circulating tumour cells and tumour-associated factors leverage bodily fluids, their underlying forces and imposed stresses during metastasis. As the contribution of bodily fluids and their mechanics raises interesting questions about the biology of the metastatic cascade, an improved understanding of this process might provide a new avenue for targeting cancer cells in transit.


Asunto(s)
Líquidos Corporales/metabolismo , Modelos Biológicos , Neoplasias/metabolismo , Neoplasias/patología , Microambiente Tumoral , Animales , Biomarcadores , Líquidos Corporales/efectos de los fármacos , Matriz Extracelular/metabolismo , Humanos , Terapia Molecular Dirigida , Metástasis de la Neoplasia , Neoplasias/etiología , Neoplasias/terapia , Células Neoplásicas Circulantes/efectos de los fármacos , Células Neoplásicas Circulantes/metabolismo , Células Neoplásicas Circulantes/patología , Microambiente Tumoral/efectos de los fármacos , Microambiente Tumoral/genética , Microambiente Tumoral/inmunología
13.
Cell Rep ; 28(10): 2491-2500.e5, 2019 09 03.
Artículo en Inglés | MEDLINE | ID: mdl-31484062

RESUMEN

Cancer metastasis is a process whereby a primary tumor spreads to distant organs. We have demonstrated previously that blood flow controls the intravascular arrest of circulating tumor cells (CTCs) through stable adhesion to endothelial cells. We now aim to define the contribution of cell adhesion potential and identify adhesion receptors at play. Early arrest is mediated by the formation of weak adhesion, depending on CD44 and integrin αvß3. Stabilization of this arrest uses integrin α5ß1-dependent adhesions with higher adhesion strength, which allows CTCs to stop in vascular regions with lower shear forces. Moreover, blood flow favors luminal deposition of fibronectin on endothelial cells, an integrin α5ß1 ligand. Finally, we show that only receptors involved in stable adhesion are required for subsequent extravasation and metastasis. In conclusion, we identified the molecular partners that are sequentially exploited by CTCs to arrest and extravasate in vascular regions with permissive flow regimes.


Asunto(s)
Neoplasias/patología , Células Neoplásicas Circulantes/patología , Estrés Mecánico , Animales , Adhesión Celular , Línea Celular Tumoral , Embrión no Mamífero/patología , Femenino , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Humanos , Integrinas/metabolismo , Neoplasias Pulmonares/secundario , Ratones Endogámicos BALB C , Metástasis de la Neoplasia , Células Neoplásicas Circulantes/metabolismo , Pez Cebra/embriología
14.
J Colloid Interface Sci ; 542: 469-482, 2019 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-30772509

RESUMEN

The engineering of luminescent nanoplatforms for biomedical applications displaying ability for scaling-up, good colloidal stability in aqueous solutions, biocompatibility, and providing an easy detection in vivo by fluorescence methods while offering high potential of functionalities, is currently a challenge. The original strategy proposed here involves the use of large pore (ca. 15 nm) mesoporous silica (MS) nanoparticles (NPs) having a stellate morphology (denoted STMS) on which fluorescent InP/ZnS quantum dots (QDs) are covalently grafted with a high yield (≥90%). These nanoplatforms are after that further coated to avoid a potential QDs release. To protect the QDs from potential release or dissolution, two wrapping methods are developed: (i) a further coating with a silica shell having small pores (≤2 nm) or (ii) a tight polysaccharide shell deposited on the surface of these STMS@QDs particles via an original isobutyramide (IBAM)-mediated method. Both wrapping approaches yield to novel luminescent nanoplatforms displaying a highly controlled structure, a high size monodispersity (ca. 200 and 100 nm respectively) and colloidal stability in aqueous solutions. Among both methods, the IBAM-polysaccharide coating approach is shown the most suitable to ensure QDs protection and to avoid metal cation release over three months. Furthermore, these original STMS@QDs@polysaccharide luminescent nanoplatforms are shown biocompatible in vitro with murine cancer cells and in vivo after injections within zebrafish (ZF) translucent embryos where no sign of toxicity is observed during their development over several days. As assessed by in vivo confocal microscopy imaging, these nanoplatforms are shown to rapidly extravasate from blood circulation to settle in neighboring tissues, ensuring a remanent fluorescent labelling of ZF tissues in vivo. Such fluorescent and hybrid STMS composites are envisioned as novel luminescent nanoplatforms for in vivo fluorescence tracking applications and offer a versatile degree of additional functionalities (drug delivery, incorporation of magnetic/plasmonic core).


Asunto(s)
Materiales Biocompatibles/química , Colorantes Fluorescentes/química , Nanocompuestos/química , Puntos Cuánticos/química , Dióxido de Silicio/química , Amidas/química , Animales , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Indio/química , Ratones , Tamaño de la Partícula , Fosfinas/química , Polisacáridos/química , Porosidad , Espectrometría de Fluorescencia , Sulfuros/química , Propiedades de Superficie , Pez Cebra/embriología , Compuestos de Zinc/química
15.
Dev Cell ; 48(4): 554-572.e7, 2019 02 25.
Artículo en Inglés | MEDLINE | ID: mdl-30745140

RESUMEN

Tumor extracellular vesicles (EVs) mediate the communication between tumor and stromal cells mostly to the benefit of tumor progression. Notably, tumor EVs travel in the bloodstream, reach distant organs, and locally modify the microenvironment. However, visualizing these events in vivo still faces major hurdles. Here, we describe an approach for tracking circulating tumor EVs in a living organism: we combine chemical and genetically encoded probes with the zebrafish embryo as an animal model. We provide a first description of tumor EVs' hemodynamic behavior and document their intravascular arrest. We show that circulating tumor EVs are rapidly taken up by endothelial cells and blood patrolling macrophages and subsequently stored in degradative compartments. Finally, we demonstrate that tumor EVs activate macrophages and promote metastatic outgrowth. Overall, our study proves the usefulness and prospects of zebrafish embryo to track tumor EVs and dissect their role in metastatic niches formation in vivo.


Asunto(s)
Células Endoteliales/citología , Vesículas Extracelulares/metabolismo , Neoplasias/patología , Microambiente Tumoral/fisiología , Animales , Comunicación Celular/fisiología , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Exosomas/metabolismo , Células del Estroma/metabolismo , Pez Cebra
16.
Methods Mol Biol ; 1749: 195-211, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29525999

RESUMEN

Most cancers end up with the death of patients caused by the formation of secondary tumors, called metastases. However, how these secondary tumors appear and develop is only poorly understood. A fine understanding of the multiple steps of the metastasis cascade requires in vivo models allowing high spatiotemporal analysis of the behavior of metastatic cells. Zebrafish embryos combine several advantages such as transparency, small size, stereotyped anatomy, and easy handling, making it a very powerful model for cell and cancer biology, and in vivo imaging analysis. In the following chapter, we describe a complete procedure allowing in vivo imaging methods, at high throughput and spatiotemporal resolution, to assess the behavior of circulating tumor cells (CTCs) in an experimental metastasis assay. This protocol provides access, for the first time, to the earliest steps of tumor cell seeding during metastasis formation.


Asunto(s)
Embrión no Mamífero/patología , Metástasis de la Neoplasia/patología , Células Neoplásicas Circulantes/patología , Pez Cebra/embriología , Animales , Análisis Espacio-Temporal
17.
Dev Cell ; 45(1): 33-52.e12, 2018 04 09.
Artículo en Inglés | MEDLINE | ID: mdl-29634935

RESUMEN

Metastatic seeding is driven by cell-intrinsic and environmental cues, yet the contribution of biomechanics is poorly known. We aim to elucidate the impact of blood flow on the arrest and the extravasation of circulating tumor cells (CTCs) in vivo. Using the zebrafish embryo, we show that arrest of CTCs occurs in vessels with favorable flow profiles where flow forces control the adhesion efficacy of CTCs to the endothelium. We biophysically identified the threshold values of flow and adhesion forces allowing successful arrest of CTCs. In addition, flow forces fine-tune tumor cell extravasation by impairing the remodeling properties of the endothelium. Importantly, we also observe endothelial remodeling at arrest sites of CTCs in mouse brain capillaries. Finally, we observed that human supratentorial brain metastases preferably develop in areas with low perfusion. These results demonstrate that hemodynamic profiles at metastatic sites regulate key steps of extravasation preceding metastatic outgrowth.


Asunto(s)
Neoplasias Encefálicas/secundario , Neoplasias de la Mama/patología , Adhesión Celular , Hemodinámica , Neoplasias Pulmonares/patología , Melanoma/patología , Células Neoplásicas Circulantes/patología , Animales , Neoplasias Encefálicas/metabolismo , Neoplasias de la Mama/metabolismo , Ciclo Celular , Circulación Cerebrovascular , Embrión no Mamífero/citología , Embrión no Mamífero/metabolismo , Endotelio Vascular/citología , Endotelio Vascular/metabolismo , Femenino , Humanos , Neoplasias Pulmonares/metabolismo , Masculino , Melanoma/metabolismo , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Células Neoplásicas Circulantes/metabolismo , Estudios Retrospectivos , Células Tumorales Cultivadas , Pez Cebra
18.
Mol Biol Cell ; 28(23): 3252-3260, 2017 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-28904205

RESUMEN

Force sensing and generation at the tissue and cellular scale is central to many biological events. There is a growing interest in modern cell biology for methods enabling force measurements in vivo. Optical trapping allows noninvasive probing of piconewton forces and thus emerged as a promising mean for assessing biomechanics in vivo. Nevertheless, the main obstacles lie in the accurate determination of the trap stiffness in heterogeneous living organisms, at any position where the trap is used. A proper calibration of the trap stiffness is thus required for performing accurate and reliable force measurements in vivo. Here we introduce a method that overcomes these difficulties by accurately measuring hemodynamic profiles in order to calibrate the trap stiffness. Doing so, and using numerical methods to assess the accuracy of the experimental data, we measured flow profiles and drag forces imposed to trapped red blood cells of living zebrafish embryos. Using treatments enabling blood flow tuning, we demonstrated that such a method is powerful in measuring hemodynamic forces in vivo with accuracy and confidence. Altogether this study demonstrates the power of optical tweezing in measuring low range hemodynamic forces in vivo and offers an unprecedented tool in both cell and developmental biology.


Asunto(s)
Fenómenos Biomecánicos/fisiología , Hemodinámica/fisiología , Calibración , Equipos y Suministros , Fenómenos Mecánicos , Pinzas Ópticas , Fenómenos Físicos , Proyectos de Investigación , Estrés Mecánico
19.
Cell Adh Migr ; 9(5): 345-56, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26312653

RESUMEN

Metastasis is the end product of a multistep process where cancer cells disseminate and home themselves in distant organs. Tumor cell extravasation is a rare, inefficient and transient event in nature and makes its studies very difficult. Noteworthy, little is known about how cancer cells arrest, adhere and pass through the endothelium of capillaries. Moreover, the key events driving metastatic growth in specific organs are not well understood. Thus, although metastasis is the leading cause of cancer-related death, how cancer cells acquire their abilities to colonize distant organs and why they do so in specific locations remain central questions in the understanding of this deadly disease. In this review, we would like to confront 2 concepts explaining the efficiency and location of metastatic secondary tumors. While the "seed and soil" hypothesis states that metastasis occurs at sites where the local microenvironment is favorable, the "mechanical" concept argues that metastatic seeding occurs at sites of optimal flow patterns. In addition, recent evidence suggests that the primary event driving tumor cell arrest before extravasation is mostly controlled by blood circulation patterns as well as mechanical cues during the process of extravasation. In conclusion, the organ tropism displayed by cancer cells during metastatic colonization is a multi-step process, which is regulated by the delivery and survival of circulating tumor cells (CTCs) through blood circulation, the ability of these CTCs to adhere and cross the physical barrier imposed by the endothelium and finally by the suitability of the soil to favor growth of secondary tumors.


Asunto(s)
Microambiente Celular/fisiología , Metástasis de la Neoplasia/patología , Células Neoplásicas Circulantes/patología , Animales , Fenómenos Biomecánicos , Circulación Sanguínea , Humanos , Tropismo
20.
Curr Biol ; 23(18): 1726-35, 2013 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-23954432

RESUMEN

BACKGROUND: Hydrodynamic forces play a central role in organ morphogenesis. The role of blood flow in shaping the developing heart is well established, but the role of fluid forces generated in the pericardial cavity surrounding the heart is unknown. Mesothelial cells lining the pericardium generate the proepicardium (PE), the precursor cell population of the epicardium, the outer layer covering the myocardium, which is essential for its maturation and the formation of the heart valves and coronary vasculature. However, there is no evidence from in vivo studies showing how epicardial precursor cells reach and attach to the heart. RESULTS: Using optical tools for real-time analysis in the zebrafish, including high-speed imaging and optical tweezing, we show that the heartbeat generates pericardiac fluid advections that drive epicardium formation. These flow forces trigger PE formation and epicardial progenitor cell release and motion. The pericardial flow also influences the site of PE cell adhesion to the myocardium. We additionally identify novel mesothelial sources of epicardial precursors and show that precursor release and adhesion occur both through pericardiac fluid advections and through direct contact with the myocardium. CONCLUSIONS: Two hydrodynamic forces couple cardiac development and function: first, blood flow inside the heart, and second, the pericardial fluid advections outside the heart identified here. This pericardiac fluid flow is essential for epicardium formation and represents the first example of hydrodynamic flow forces controlling organogenesis through an action on mesothelial cells.


Asunto(s)
Hidrodinámica , Morfogénesis , Pericardio/embriología , Pez Cebra/embriología , Animales , Adhesión Celular , Diferenciación Celular , Desarrollo Embrionario , Corazón/anatomía & histología , Corazón/embriología , Corazón/fisiología , Miocardio/citología , Pericardio/anatomía & histología , Flujo Sanguíneo Regional , Células Madre/citología , Células Madre/fisiología , Pez Cebra/anatomía & histología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA