Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
J Virol ; 91(24)2017 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-28978705

RESUMEN

Prion diseases, or transmissible spongiform encephalopathies (TSEs), are a group of rare progressive neurodegenerative disorders caused by an abnormally folded prion protein (PrPSc). This is capable of transforming the normal cellular prion protein (PrPC) into new infectious PrPSc Interspecies prion transmissibility studies performed by experimental challenge and the outbreak of bovine spongiform encephalopathy that occurred in the late 1980s and 1990s showed that while some species (sheep, mice, and cats) are readily susceptible to TSEs, others are apparently resistant (rabbits, dogs, and horses) to the same agent. To study the mechanisms of low susceptibility to TSEs of certain species, the mouse-rabbit transmission barrier was used as a model. To identify which specific amino acid residues determine high or low susceptibility to PrPSc propagation, protein misfolding cyclic amplification (PMCA), which mimics PrPC-to-PrPSc conversion with accelerated kinetics, was used. This allowed amino acid substitutions in rabbit PrP and accurate analysis of misfolding propensities. Wild-type rabbit recombinant PrP could not be misfolded into a protease-resistant self-propagating isoform in vitro despite seeding with at least 12 different infectious prions from diverse origins. Therefore, rabbit recombinant PrP mutants were designed to contain every single amino acid substitution that distinguishes rabbit recombinant PrP from mouse recombinant PrP. Key amino acid residue substitutions were identified that make rabbit recombinant PrP susceptible to misfolding, and using these, protease-resistant misfolded recombinant rabbit PrP was generated. Additional studies characterized the mechanisms by which these critical amino acid residue substitutions increased the misfolding susceptibility of rabbit PrP.IMPORTANCE Prion disorders are invariably fatal, untreatable diseases typically associated with long incubation periods and characteristic spongiform changes associated with neuronal loss in the brain. Development of any treatment or preventative measure is dependent upon a detailed understanding of the pathogenesis of these diseases, and understanding the mechanism by which certain species appear to be resistant to TSEs is critical. Rabbits are highly resistant to naturally acquired TSEs, and even under experimental conditions, induction of clinical disease is not easy. Using recombinant rabbit PrP as a model, this study describes critical molecular determinants that confer this high resistance to transmissible spongiform encephalopathies.


Asunto(s)
Aminoácidos/química , Proteínas Priónicas/química , Pliegue de Proteína , Sustitución de Aminoácidos , Aminoácidos/aislamiento & purificación , Animales , Bovinos , Susceptibilidad a Enfermedades , Ratones , Mutación , Enfermedades por Prión/metabolismo , Proteínas Priónicas/genética , Proteínas Priónicas/metabolismo , Conejos , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo
2.
Acta Neuropathol ; 135(2): 179-199, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29094186

RESUMEN

Prion diseases are caused by a misfolding of the cellular prion protein (PrP) to a pathogenic isoform named PrPSc. Prions exist as strains, which are characterized by specific pathological and biochemical properties likely encoded in the three-dimensional structure of PrPSc. However, whether cofactors determine these different PrPSc conformations and how this relates to their specific biological properties is largely unknown. To understand how different cofactors modulate prion strain generation and selection, Protein Misfolding Cyclic Amplification was used to create a diversity of infectious recombinant prion strains by propagation in the presence of brain homogenate. Brain homogenate is known to contain these mentioned cofactors, whose identity is only partially known, and which facilitate conversion of PrPC to PrPSc. We thus obtained a mix of distinguishable infectious prion strains. Subsequently, we replaced brain homogenate, by different polyanionic cofactors that were able to drive the evolution of mixed prion populations toward specific strains. Thus, our results show that a variety of infectious recombinant prions can be generated in vitro and that their specific type of conformation, i.e., the strain, is dependent on the cofactors available during the propagation process. These observations have significant implications for understanding the pathogenesis of prion diseases and their ability to replicate in different tissues and hosts. Importantly, these considerations might apply to other neurodegenerative diseases for which different conformations of misfolded proteins have been described.


Asunto(s)
Encéfalo/metabolismo , Enfermedades por Prión/metabolismo , Proteínas Priónicas/metabolismo , Animales , Arvicolinae , Encéfalo/patología , Escherichia coli , Ratones Transgénicos , Polimorfismo Genético , Proteínas Priónicas/genética , Pliegue de Proteína , Proteínas Recombinantes/metabolismo
3.
Mol Neurobiol ; 56(8): 5287-5303, 2019 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-30592012

RESUMEN

The large chronic wasting disease (CWD)-affected cervid population in the USA and Canada, and the risk of the disease being transmitted to humans through intermediate species, is a highly worrying issue that is still poorly understood. In this case, recombinant protein misfolding cyclic amplification was used to determine, in vitro, the relevance of each individual amino acid on cross-species prion transmission. Others and we have found that the ß2-α2 loop is a key modulator of transmission barriers between species and markedly influences infection by sheep scrapie, bovine spongiform encephalopathy (BSE), or elk CWD. Amino acids that differentiate ovine and deer normal host prion protein (PrPC) and associated with structural rigidity of the loop ß2-α2 (S173N, N177T) appear to confer resistance to some prion diseases. However, addition of methionine at codon 208 together with the previously described rigid loop substitutions seems to hide a key in this species barrier, as it makes sheep recombinant prion protein highly susceptible to CWD-induced misfolding. These studies indicate that interspecies prion transmission is not only governed just by the ß2-α2 loop amino acid sequence but also by its interactions with the α3-helix as shown by substitution I208M. Transmissible spongiform encephalopathies, characterized by long incubation periods and spongiform changes associated with neuronal loss in the brain, have been described in several mammalian species appearing either naturally (scrapie in sheep and goats, bovine spongiform encephalopathy in cattle, chronic wasting disease in cervids, Creutzfeldt-Jakob disease in humans) or by experimental transmission studies (scrapie in mice and hamsters). Much of the pathogenesis of the prion diseases has been determined in the last 40 years, such as the etiological agent or the fact that prions occur as different strains that show distinct biological and physicochemical properties. However, there are many unanswered questions regarding the strain phenomenon and interspecies transmissibility. To assess the risk of interspecies transmission between scrapie and chronic wasting disease, an in vitro prion propagation method has been used. This technique allows to predict the amino acids preventing the transmission between sheep and deer prion diseases.


Asunto(s)
Ciervos/metabolismo , Proteínas Priónicas/metabolismo , Ovinos/metabolismo , Secuencia de Aminoácidos , Sustitución de Aminoácidos , Animales , Pollos , Ratones Noqueados , Proteínas Priónicas/química , Dominios Proteicos , Pliegue de Proteína , Estructura Secundaria de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Especificidad de la Especie
4.
Methods Mol Biol ; 1658: 205-216, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28861792

RESUMEN

Prion diseases or transmissible spongiform encephalopathies (TSEs) are a group of neurodegenerative diseases where the misfolding of the prion protein (PrP) is a crucial event. Based on studies in TSE-affected humans and the generation of transgenic mouse models overexpressing different mutated versions of the PrP, we conclude that both wild-type and mutated PrPs exhibit differential propensity to misfold in vivo. Here, we describe a new method in vitro to assess and quantify the PrP misfolding phenomenon in order to better understand the molecular mechanisms involved in this process.


Asunto(s)
Bioensayo , Proteínas PrPC/química , Proteínas PrPSc/química , Sonicación/métodos , Secuencia de Aminoácidos , Animales , Encéfalo/metabolismo , Química Encefálica , Diálisis , Endopeptidasa K/química , Expresión Génica , Ratones , Ratones Noqueados , Proteínas PrPC/deficiencia , Proteínas PrPC/genética , Proteínas PrPSc/genética , Proteínas PrPSc/metabolismo , Conformación Proteica en Lámina beta , Pliegue de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
5.
Sci Rep ; 7(1): 9584, 2017 08 29.
Artículo en Inglés | MEDLINE | ID: mdl-28851967

RESUMEN

Human transmissible spongiform encephalopathies (TSEs) or prion diseases are a group of fatal neurodegenerative disorders that include Kuru, Creutzfeldt-Jakob disease, Gerstmann-Sträussler-Scheinker syndrome (GSS), and fatal familial insomnia. GSS is a genetically determined TSE caused by a range of mutations within the prion protein (PrP) gene. Several animal models, based on the expression of PrPs carrying mutations analogous to human heritable prion diseases, support that mutations might predispose PrP to spontaneously misfold. An adapted Protein Misfolding Cyclic Amplification methodology based on the use of human recombinant PrP (recPMCA) generated different self-propagating misfolded proteins spontaneously. These were characterized biochemically and structurally, and the one partially sharing some of the GSS PrPSc molecular features was inoculated into different animal models showing high infectivity. This constitutes an infectious recombinant prion which could be an invaluable model for understanding GSS. Moreover, this study proves the possibility to generate recombinant versions of other human prion diseases that could provide a further understanding on the molecular features of these devastating disorders.


Asunto(s)
Enfermedad de Gerstmann-Straussler-Scheinker/etiología , Proteínas Priónicas/genética , Recombinación Genética , Sustitución de Aminoácidos , Animales , Modelos Animales de Enfermedad , Evolución Molecular , Enfermedad de Gerstmann-Straussler-Scheinker/metabolismo , Enfermedad de Gerstmann-Straussler-Scheinker/patología , Humanos , Ratones , Ratones Transgénicos , Mutación , Proteínas Priónicas/química , Proteínas Priónicas/metabolismo , Agregado de Proteínas , Agregación Patológica de Proteínas , Conformación Proteica , Pliegue de Proteína , Selección Genética
6.
Virus Res ; 207: 5-24, 2015 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-25907990

RESUMEN

Prion diseases or Transmissible Spongiform Encephalopathies (TSEs) are a group of fatal neurodegenerative disorders affecting several mammalian species being Creutzfeldt-Jacob Disease (CJD) the most representative in human beings, scrapie in ovine, Bovine Spongiform Encephalopathy (BSE) in bovine and Chronic Wasting Disease (CWD) in cervids. As stated by the "protein-only hypothesis", the causal agent of TSEs is a self-propagating aberrant form of the prion protein (PrP) that through a misfolding event acquires a ß-sheet rich conformation known as PrP(Sc) (from scrapie). This isoform is neurotoxic, aggregation prone and induces misfolding of native cellular PrP. Compelling evidence indicates that disease-specific protein misfolding in amyloid deposits could be shared by other disorders showing aberrant protein aggregates such as Alzheimer's Disease (AD), Parkinson's Disease (PD), Amyotrophic lateral sclerosis (ALS) and systemic Amyloid A amyloidosis (AA amyloidosis). Evidences of shared mechanisms of the proteins related to each disease with prions will be reviewed through the available in vivo models. Taking prion research as reference, typical prion-like features such as seeding and propagation ability, neurotoxic species causing disease, infectivity, transmission barrier and strain evidences will be analyzed for other protein-related diseases. Thus, prion-like features of amyloid ß peptide and tau present in AD, α-synuclein in PD, SOD-1, TDP-43 and others in ALS and serum α-amyloid (SAA) in systemic AA amyloidosis will be reviewed through models available for each disease.


Asunto(s)
Modelos Animales de Enfermedad , Enfermedades por Prión/metabolismo , Deficiencias en la Proteostasis/metabolismo , Animales , Humanos , Enfermedades por Prión/genética , Pliegue de Proteína , Proteínas/química , Proteínas/genética , Proteínas/metabolismo , Deficiencias en la Proteostasis/genética
7.
Int J Cell Biol ; 2013: 583498, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24187553

RESUMEN

Prions are considered the best example to prove that the biological information can be transferred protein to protein through a conformational change. The term "prion-like" is used to describe molecular mechanisms that share similarities with the mammalian prion protein self-perpetuating aggregation and spreading characteristics. Since prions are presumably composed only of protein and are infectious, the more similar the mechanisms that occur in the different neurodegenerative diseases, the more these processes will resemble an infection. In vitro and in vivo experiments carried out during the last decade in different neurodegenerative disorders such as Alzheimer's disease (AD), Parkinson's diseases (PD), and amyotrophic lateral sclerosis (ALS) have shown a convergence toward a unique mechanism of misfolded protein propagation. In spite of the term "infection" that could be used to explain the mechanism governing the diversity of the pathological processes, other concepts as "seeding" or "de novo induction" are being used to describe the in vivo propagation and transmissibility of misfolded proteins. The current studies are demanding an extended definition of "disease-causing agents" to include those already accepted as well as other misfolded proteins. In this new scenario, "seeding" would be a type of mechanism by which an infectious agent can be transmitted but should not be used to define a whole "infection" process.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA