Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
Proc Natl Acad Sci U S A ; 119(16): e2200545119, 2022 04 19.
Artículo en Inglés | MEDLINE | ID: mdl-35412917

RESUMEN

Cocaine exerts its stimulant effect by inhibiting dopamine (DA) reuptake, leading to increased dopamine signaling. This action is thought to reflect the binding of cocaine to the dopamine transporter (DAT) to inhibit its function. However, cocaine is a relatively weak inhibitor of DAT, and many DAT inhibitors do not share cocaine's behavioral actions. Further, recent reports show more potent actions of the drug, implying the existence of a high-affinity receptor for cocaine. We now report high-affinity binding of cocaine associated with the brain acid soluble protein 1 (BASP1) with a dissociation constant (Kd) of 7 nM. Knocking down BASP1 in the striatum inhibits [3H]cocaine binding to striatal synaptosomes. Depleting BASP1 in the nucleus accumbens but not the dorsal striatum diminishes locomotor stimulation in mice. Our findings imply that BASP1 is a pharmacologically relevant receptor for cocaine.


Asunto(s)
Proteínas de Unión a Calmodulina , Proteínas Portadoras , Cocaína , Proteínas del Citoesqueleto , Proteínas del Tejido Nervioso , Receptores de Droga , Animales , Sitios de Unión , Proteínas de Unión a Calmodulina/genética , Proteínas de Unión a Calmodulina/metabolismo , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Cocaína/metabolismo , Cocaína/farmacología , Cuerpo Estriado/metabolismo , Proteínas del Citoesqueleto/genética , Proteínas del Citoesqueleto/metabolismo , Dopamina/metabolismo , Proteínas de Transporte de Dopamina a través de la Membrana Plasmática/antagonistas & inhibidores , Técnicas de Sustitución del Gen , Humanos , Ratones , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Ratas , Receptores de Droga/genética , Receptores de Droga/metabolismo
2.
Proc Natl Acad Sci U S A ; 118(39)2021 09 28.
Artículo en Inglés | MEDLINE | ID: mdl-34556581

RESUMEN

d-amino acids are increasingly recognized as important signaling molecules in the mammalian central nervous system. However, the d-stereoisomer of the amino acid with the fastest spontaneous racemization ratein vitro in vitro, cysteine, has not been examined in mammals. Using chiral high-performance liquid chromatography and a stereospecific luciferase assay, we identify endogenous d-cysteine in the mammalian brain. We identify serine racemase (SR), which generates the N-methyl-d-aspartate (NMDA) glutamate receptor coagonist d-serine, as a candidate biosynthetic enzyme for d-cysteine. d-cysteine is enriched more than 20-fold in the embryonic mouse brain compared with the adult brain. d-cysteine reduces the proliferation of cultured mouse embryonic neural progenitor cells (NPCs) by ∼50%, effects not shared with d-serine or l-cysteine. The antiproliferative effect of d-cysteine is mediated by the transcription factors FoxO1 and FoxO3a. The selective influence of d-cysteine on NPC proliferation is reflected in overgrowth and aberrant lamination of the cerebral cortex in neonatal SR knockout mice. Finally, we perform an unbiased screen for d-cysteine-binding proteins in NPCs by immunoprecipitation with a d-cysteine-specific antibody followed by mass spectrometry. This approach identifies myristoylated alanine-rich C-kinase substrate (MARCKS) as a putative d-cysteine-binding protein. Together, these results establish endogenous mammalian d-cysteine and implicate it as a physiologic regulator of NPC homeostasis in the developing brain.


Asunto(s)
Encéfalo/fisiología , Células-Madre Neurales/fisiología , Racemasas y Epimerasas/fisiología , Serina/metabolismo , Animales , Animales Recién Nacidos , Encéfalo/citología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Células-Madre Neurales/citología , Receptores de N-Metil-D-Aspartato/metabolismo , Serina/química
3.
Mol Psychiatry ; 26(2): 370-382, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33414501

RESUMEN

Cocaine exerts its stimulant effect by inhibiting dopamine reuptake leading to increased dopamine signaling. This action is thought to reflect binding of cocaine to the dopamine transporter (DAT) to inhibit its function. However, cocaine is a relatively weak inhibitor of DAT, and many DAT inhibitors do not share the behavioral actions of cocaine. We previously showed that toxic levels of cocaine induce autophagic neuronal cell death. Here, we show that subnanomolar concentrations of cocaine elicit neural autophagy in vitro and in vivo. Autophagy inhibitors reduce the locomotor stimulant effect of cocaine in mice. Cocaine-induced autophagy degrades transporters for dopamine but not serotonin in the nucleus accumbens. Autophagy inhibition impairs cocaine conditioned place preference in mice. Our findings indicate that autophagic degradation of DAT modulates behavioral actions of cocaine.


Asunto(s)
Cocaína , Animales , Autofagia , Cocaína/farmacología , Proteínas de Transporte de Dopamina a través de la Membrana Plasmática/metabolismo , Inhibidores de Captación de Dopamina/farmacología , Ratones , Núcleo Accumbens/metabolismo
4.
Proc Natl Acad Sci U S A ; 116(15): 7471-7476, 2019 04 09.
Artículo en Inglés | MEDLINE | ID: mdl-30910969

RESUMEN

Phosphorylation of histone H2AX is a major contributor to efficient DNA repair. We recently reported neurobehavioral deficits in mice lacking H2AX. Here we establish that this neural failure stems from impairment of mitochondrial function and repression of the mitochondrial biogenesis gene PGC-1α. H2AX loss leads to reduced levels of the major subunits of the mitochondrial respiratory complexes in mouse embryonic fibroblasts and in the striatum, a brain region particularly vulnerable to mitochondrial damage. These defects are substantiated by disruption of the mitochondrial shape in H2AX mutant cells. Ectopic expression of PGC-1α restores mitochondrial oxidative phosphorylation complexes and mitigates cell death. H2AX knockout mice display increased neuronal death in the brain when challenged with 3-nitropronionic acid, which targets mitochondria. This study establishes a role for H2AX in mitochondrial homeostasis associated with neuroprotection.


Asunto(s)
Histonas/metabolismo , Mitocondrias/metabolismo , Células-Madre Neurales/metabolismo , Neuronas/metabolismo , Fosforilación Oxidativa , Animales , Muerte Celular , Transporte de Electrón/fisiología , Histonas/genética , Ratones , Ratones Noqueados , Mitocondrias/genética , Células-Madre Neurales/citología , Neuronas/citología , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/genética , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/metabolismo , Fosforilación
5.
Proc Natl Acad Sci U S A ; 114(8): 2036-2041, 2017 02 21.
Artículo en Inglés | MEDLINE | ID: mdl-28154132

RESUMEN

Inositol hexakisphosphate kinase 1 (IP6K1), which generates 5-diphosphoinositol pentakisphosphate (5-IP7), physiologically mediates numerous functions. We report that IP6K1 deletion leads to brain malformation and abnormalities of neuronal migration. IP6K1 physiologically associates with α-actinin and localizes to focal adhesions. IP6K1 deletion disrupts α-actinin's intracellular localization and function. The IP6K1 deleted cells display substantial decreases of stress fiber formation and impaired cell migration and spreading. Regulation of α-actinin by IP6K1 requires its kinase activity. Deletion of IP6K1 abolishes α-actinin tyrosine phosphorylation, which is known to be regulated by focal adhesion kinase (FAK). FAK phosphorylation is substantially decreased in IP6K1 deleted cells. 5-IP7, a product of IP6K1, promotes FAK autophosphorylation. Pharmacologic inhibition of IP6K by TNP [N2-(m-Trifluorobenzyl), N6-(p-nitrobenzyl)purine] recapitulates the phenotype of IP6K1 deletion. These findings establish that IP6K1 physiologically regulates neuronal migration by binding to α-actinin and influencing phosphorylation of both FAK and α-actinin through its product 5-IP7.


Asunto(s)
Actinina/metabolismo , Movimiento Celular/fisiología , Quinasa 1 de Adhesión Focal/metabolismo , Neuronas/fisiología , Fosfotransferasas (Aceptor del Grupo Fosfato)/metabolismo , Animales , Encéfalo/anomalías , Encéfalo/enzimología , Línea Celular , Inhibidores Enzimáticos/farmacología , Proteína-Tirosina Quinasas de Adhesión Focal , Humanos , Fosfatos de Inositol/metabolismo , Ratones , Ratones Noqueados , Fosforilación , Fosfotransferasas (Aceptor del Grupo Fosfato)/antagonistas & inhibidores , Fosfotransferasas (Aceptor del Grupo Fosfato)/genética , Interferencia de ARN , ARN Interferente Pequeño/metabolismo
6.
Proc Natl Acad Sci U S A ; 113(5): 1417-22, 2016 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-26787898

RESUMEN

Cocaine exerts its behavioral stimulant effects by facilitating synaptic actions of neurotransmitters such as dopamine and serotonin. It is also neurotoxic and broadly cytotoxic, leading to overdose deaths. We demonstrate that the cytotoxic actions of cocaine reflect selective enhancement of autophagy, a process that physiologically degrades metabolites and cellular organelles, and that uncontrolled autophagy can also lead to cell death. In brain cultures, cocaine markedly increases levels of LC3-II and depletes p62, both actions characteristic of autophagy. By contrast, cocaine fails to stimulate cell death processes reflecting parthanatos, monitored by cleavage of poly(ADP ribose)polymerase-1 (PARP-1), or necroptosis, assessed by levels of phosphorylated mixed lineage kinase domain-like protein. Pharmacologic inhibition of autophagy protects neurons against cocaine-induced cell death. On the other hand, inhibition of parthanatos, necroptosis, or apoptosis did not change cocaine cytotoxicity. Depletion of ATG5 or beclin-1, major mediators of autophagy, prevents cocaine-induced cell death. By contrast, depleting caspase-3, whose cleavage reflects apoptosis, fails to alter cocaine cytotoxicity, and cocaine does not alter caspase-3 cleavage. Moreover, depleting PARP-1 or RIPK1, key mediators of parthanatos and necroptosis, respectively, did not prevent cocaine-induced cell death. Autophagic actions of cocaine are mediated by the nitric oxide-glyceraldehyde-3-phosphate dehydrogenase signaling pathway. Thus, cocaine-associated autophagy is abolished by depleting GAPDH via shRNA; by the drug CGP3466B, which prevents GAPDH nitrosylation; and by mutating cysteine-150 of GAPDH, its site of nitrosylation. Treatments that selectively influence cocaine-associated autophagy may afford therapeutic benefit.


Asunto(s)
Autofagia/efectos de los fármacos , Cocaína/farmacología , Gliceraldehído-3-Fosfato Deshidrogenasas/metabolismo , Óxido Nítrico/metabolismo , Transducción de Señal , Animales , Células Cultivadas , Humanos , Ratones
7.
Proc Natl Acad Sci U S A ; 112(31): 9751-6, 2015 Aug 04.
Artículo en Inglés | MEDLINE | ID: mdl-26195796

RESUMEN

Huntington's disease (HD) is a progressive neurodegenerative disease caused by a glutamine repeat expansion in mutant huntingtin (mHtt). Despite the known genetic cause of HD, the pathophysiology of this disease remains to be elucidated. Inositol polyphosphate multikinase (IPMK) is an enzyme that displays soluble inositol phosphate kinase activity, lipid kinase activity, and various noncatalytic interactions. We report a severe loss of IPMK in the striatum of HD patients and in several cellular and animal models of the disease. This depletion reflects mHtt-induced impairment of COUP-TF-interacting protein 2 (Ctip2), a striatal-enriched transcription factor for IPMK, as well as alterations in IPMK protein stability. IPMK overexpression reverses the metabolic activity deficit in a cell model of HD. IPMK depletion appears to mediate neural dysfunction, because intrastriatal delivery of IPMK abates the progression of motor abnormalities and rescues striatal pathology in transgenic murine models of HD.


Asunto(s)
Enfermedad de Huntington/enzimología , Enfermedad de Huntington/fisiopatología , Neuronas/patología , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Adulto , Anciano , Animales , Biocatálisis , Demografía , Dependovirus/metabolismo , Modelos Animales de Enfermedad , Estabilidad de Enzimas , Femenino , Humanos , Enfermedad de Huntington/genética , Enfermedad de Huntington/patología , Masculino , Ratones Transgénicos , Persona de Mediana Edad , Mitocondrias/metabolismo , Actividad Motora , Neostriado/enzimología , Neostriado/patología , Neostriado/fisiopatología , Neuronas/metabolismo , Fosfotransferasas (Aceptor de Grupo Alcohol)/genética , Cambios Post Mortem , Proteínas Proto-Oncogénicas c-akt/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Proteínas Represoras/metabolismo , Transducción de Señal , Análisis de Supervivencia , Transcripción Genética , Proteínas Supresoras de Tumor/metabolismo
8.
Proc Natl Acad Sci U S A ; 110(40): 16181-6, 2013 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-24043835

RESUMEN

Profound induction of immediate early genes (IEGs) by neural activation is a critical determinant for plasticity in the brain, but intervening molecular signals are not well characterized. We demonstrate that inositol polyphosphate multikinase (IPMK) acts noncatalytically as a transcriptional coactivator to mediate induction of numerous IEGs. IEG induction by electroconvulsive stimulation is virtually abolished in the brains of IPMK-deleted mice, which also display deficits in spatial memory. Neural activity stimulates binding of IPMK to the histone acetyltransferase CBP and enhances its recruitment to IEG promoters. Interestingly, IPMK regulation of CBP recruitment and IEG induction does not require its catalytic activities. Dominant-negative constructs, which prevent IPMK-CBP binding, substantially decrease IEG induction. As IPMK is ubiquitously expressed, its epigenetic regulation of IEGs may influence diverse nonneural and neural biologic processes.


Asunto(s)
Encéfalo/metabolismo , Epigénesis Genética/fisiología , Regulación de la Expresión Génica/fisiología , Genes Inmediatos-Precoces/fisiología , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Activación Transcripcional/fisiología , Análisis de Varianza , Animales , Proteína de Unión a CREB/metabolismo , Inmunoprecipitación de Cromatina , Regulación de la Expresión Génica/genética , Genes Inmediatos-Precoces/genética , Aprendizaje por Laberinto , Ratones , Fosfotransferasas (Aceptor de Grupo Alcohol)/genética , Reconocimiento en Psicología/fisiología
9.
Proc Natl Acad Sci U S A ; 109(46): 18962-7, 2012 Nov 13.
Artículo en Inglés | MEDLINE | ID: mdl-23112146

RESUMEN

Stroke is a major cause of mortality and morbidity worldwide. Extracellular glutamate accumulation leading to overstimulation of the ionotropic glutamate receptors mediates neuronal injury in stroke and in neurodegenerative disorders. Here we show that miR-223 controls the response to neuronal injury by regulating the functional expression of the glutamate receptor subunits GluR2 and NR2B in brain. Overexpression of miR-223 lowers the levels of GluR2 and NR2B by targeting 3'-UTR target sites (TSs) in GluR2 and NR2B, inhibits NMDA-induced calcium influx in hippocampal neurons, and protects the brain from neuronal cell death following transient global ischemia and excitotoxic injury. MiR-223 deficiency results in higher levels of NR2B and GluR2, enhanced NMDA-induced calcium influx, and increased miniature excitatory postsynaptic currents in hippocampal neurons. In addition, the absence of MiR-223 leads to contextual, but not cued memory deficits and increased neuronal cell death following transient global ischemia and excitotoxicity. These data identify miR-223 as a major regulator of the expression of GluR2 and NR2B, and suggest a therapeutic role for miR-223 in stroke and other excitotoxic neuronal disorders.


Asunto(s)
Señalización del Calcio , Potenciales Postsinápticos Excitadores , Hipocampo/metabolismo , MicroARNs/metabolismo , Enfermedades Neurodegenerativas/metabolismo , Neuronas/metabolismo , Receptores AMPA/biosíntesis , Receptores de N-Metil-D-Aspartato/biosíntesis , Regiones no Traducidas 3'/genética , Animales , Calcio/metabolismo , Células HEK293 , Hipocampo/patología , Humanos , Ratones , MicroARNs/genética , N-Metilaspartato/genética , N-Metilaspartato/metabolismo , Enfermedades Neurodegenerativas/genética , Enfermedades Neurodegenerativas/patología , Enfermedades Neurodegenerativas/terapia , Neuronas/patología , Receptores AMPA/genética , Receptores de N-Metil-D-Aspartato/genética , Accidente Cerebrovascular/genética , Accidente Cerebrovascular/metabolismo , Accidente Cerebrovascular/patología , Accidente Cerebrovascular/terapia
10.
Front Neurosci ; 17: 1219441, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37694119

RESUMEN

One of the hallmarks of Parkinson's disease (PD) is the progressive loss of dopaminergic neurons and associated dopamine depletion. Several mechanisms, previously considered in isolation, have been proposed to contribute to the pathophysiology of dopaminergic degeneration: dopamine oxidation-mediated neurotoxicity, high dopamine transporter (DAT) expression density per neuron, and autophagy-lysosome pathway (ALP) dysfunction. However, the interrelationships among these mechanisms remained unclear. Our recent research bridges this gap, recognizing autophagy as a novel dopamine homeostasis regulator, unifying these concepts. I propose that autophagy modulates dopamine reuptake by selectively degrading DAT. In PD, ALP dysfunction could increase DAT density per neuron, and enhance dopamine reuptake, oxidation, and neurotoxicity, potentially contributing to the progressive loss of dopaminergic neurons. This integrated understanding may provide a more comprehensive view of aspects of PD pathophysiology and opens new avenues for therapeutic interventions.

11.
J Clin Invest ; 118(2): 659-70, 2008 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-18219391

RESUMEN

Neurodegeneration in familial amyotrophic lateral sclerosis (ALS) is associated with enhanced redox stress caused by dominant mutations in superoxide dismutase-1 (SOD1). SOD1 is a cytosolic enzyme that facilitates the conversion of superoxide (O(2)(*-)) to H(2)O(2). Here we demonstrate that SOD1 is not just a catabolic enzyme, but can also directly regulate NADPH oxidase-dependent (Nox-dependent) O(2)(*-) production by binding Rac1 and inhibiting its GTPase activity. Oxidation of Rac1 by H(2)O(2) uncoupled SOD1 binding in a reversible fashion, producing a self-regulating redox sensor for Nox-derived O(2)(*-) production. This process of redox-sensitive uncoupling of SOD1 from Rac1 was defective in SOD1 ALS mutants, leading to enhanced Rac1/Nox activation in transgenic mouse tissues and cell lines expressing ALS SOD1 mutants. Glial cell toxicity associated with expression of SOD1 mutants in culture was significantly attenuated by treatment with the Nox inhibitor apocynin. Treatment of ALS mice with apocynin also significantly increased their average life span. This redox sensor mechanism may explain the gain-of-function seen with certain SOD1 mutations associated with ALS and defines new therapeutic targets.


Asunto(s)
Esclerosis Amiotrófica Lateral/enzimología , NADPH Oxidasas/metabolismo , Neuropéptidos/metabolismo , Superóxido Dismutasa/fisiología , Proteínas de Unión al GTP rac/metabolismo , Acetofenonas/farmacología , Esclerosis Amiotrófica Lateral/genética , Animales , Modelos Animales de Enfermedad , Inhibidores Enzimáticos/farmacología , Peróxido de Hidrógeno/toxicidad , Longevidad/efectos de los fármacos , Glicoproteínas de Membrana/metabolismo , Ratones , Ratones Transgénicos , Mutación , NADPH Oxidasa 2 , Oxidación-Reducción , Superóxido Dismutasa/genética , Superóxido Dismutasa-1 , Proteína de Unión al GTP rac1
12.
J Clin Invest ; 117(10): 2913-9, 2007 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-17853944

RESUMEN

Amyotrophic lateral sclerosis (ALS), one of the most common adult-onset neurodegenerative diseases, has no known cure. Enhanced redox stress and inflammation have been associated with the pathoprogression of ALS through a poorly defined mechanism. Here we determined that dysregulated redox stress in ALS mice caused by NADPH oxidases Nox1 and Nox2 significantly influenced the progression of motor neuron disease caused by mutant SOD1(G93A) expression. Deletion of either Nox gene significantly slowed disease progression and improved survival. However, 50% survival rates were enhanced significantly more by Nox2 deletion than by Nox1 deletion. Interestingly, female ALS mice containing only 1 active X-linked Nox1 or Nox2 gene also had significantly delayed disease onset, but showed normal disease progression rates. Nox activity in spinal cords from Nox2 heterozygous female ALS mice was approximately 50% that of WT female ALS mice, suggesting that random X-inactivation was not influenced by Nox2 gene deletion. Hence, chimerism with respect to Nox-expressing cells in the spinal cord significantly delayed onset of motor neuron disease in ALS. These studies define what we believe to be new modifier gene targets for treatment of ALS.


Asunto(s)
Esclerosis Amiotrófica Lateral/enzimología , Glicoproteínas de Membrana/antagonistas & inhibidores , NADH NADPH Oxidorreductasas/antagonistas & inhibidores , NADPH Oxidasas/antagonistas & inhibidores , Esclerosis Amiotrófica Lateral/genética , Animales , Progresión de la Enfermedad , Femenino , Eliminación de Gen , Humanos , Masculino , Glicoproteínas de Membrana/análisis , Glicoproteínas de Membrana/genética , Ratones , Ratones Noqueados , NADH NADPH Oxidorreductasas/análisis , NADH NADPH Oxidorreductasas/genética , NADPH Oxidasa 1 , NADPH Oxidasa 2 , NADPH Oxidasas/análisis , NADPH Oxidasas/genética , Oxidación-Reducción , Estrés Oxidativo/genética , Médula Espinal/enzimología , Superóxido Dismutasa/genética , Superóxido Dismutasa-1
13.
Sci Rep ; 10(1): 6618, 2020 04 20.
Artículo en Inglés | MEDLINE | ID: mdl-32313132

RESUMEN

Despite current progress achieved in the surgical technique of radical prostatectomy, post-operative complications such as erectile dysfunction and urinary incontinence persist at high incidence rates. In this paper, we present a methodology for functional intra-operative localization of the cavernous nerve (CN) network for nerve-sparing radical prostatectomy using near-infrared cyanine voltage-sensitive dye (VSD) imaging, which visualizes membrane potential variations in the CN and its branches (CNB) in real time. As a proof-of-concept experiment, we demonstrate a functioning complex nerve network in response to electrical stimulation of the CN, which was clearly differentiated from surrounding tissues in an in vivo rat prostate model. Stimulation of an erection was confirmed by correlative intracavernosal pressure (ICP) monitoring. Within 10 minutes, we performed trans-fascial staining of the CN by direct VSD administration. Our findings suggest the applicability of VSD imaging for real-time, functional imaging guidance during nerve-sparing radical prostatectomy.


Asunto(s)
Carbocianinas/química , Colorantes/química , Sistemas de Computación , Rayos Infrarrojos , Red Nerviosa/diagnóstico por imagen , Pene/inervación , Pene/cirugía , Imagen de Colorante Sensible al Voltaje , Animales , Artefactos , Secciones por Congelación , Humanos , Masculino , Movimiento (Física) , Pene/diagnóstico por imagen , Ratas Sprague-Dawley , Reproducibilidad de los Resultados
14.
J Neural Eng ; 17(2): 025001, 2020 04 08.
Artículo en Inglés | MEDLINE | ID: mdl-32084654

RESUMEN

OBJECTIVE: We report the transcranial functional photoacoustic (fPA) neuroimaging of N-methyl-D-aspartate (NMDA) evoked neural activity in the rat hippocampus. Concurrent quantitative electroencephalography (qEEG) and microdialysis were used to record real-time circuit dynamics and excitatory neurotransmitter concentrations, respectively. APPROACH: We hypothesized that location-specific fPA voltage-sensitive dye (VSD) contrast would identify neural activity changes in the hippocampus which correlate with NMDA-evoked excitatory neurotransmission. MAIN RESULTS: Transcranial fPA VSD imaging at the contralateral side of the microdialysis probe provided NMDA-evoked VSD responses with positive correlation to extracellular glutamate concentration changes. qEEG validated a wide range of glutamatergic excitation, which culminated in focal seizure activity after a high NMDA dose. We conclude that transcranial fPA VSD imaging can distinguish focal glutamate loads in the rat hippocampus, based on the VSD redistribution mechanism which is sensitive to the electrophysiologic membrane potential. SIGNIFICANCE: Our results suggest the future utility of this emerging technology in both laboratory and clinical sciences as an innovative functional neuroimaging modality.


Asunto(s)
N-Metilaspartato , Técnicas Fotoacústicas , Animales , Ácido Glutámico , Hipocampo/diagnóstico por imagen , Neuroimagen , Ratas , Receptores de N-Metil-D-Aspartato
15.
Mol Cell Biol ; 26(1): 140-54, 2006 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-16354686

RESUMEN

Reactive oxygen species (ROS) generated by NADPH oxidases (Nox) have been implicated in the regulation of signal transduction. However, the cellular mechanisms that link Nox activation with plasma membrane receptor signaling remain poorly defined. We have found that Nox2-derived ROS influence the formation of an active interleukin-1 (IL-1) receptor complex in the endosomal compartment by directing the H2O2-dependent binding of TRAF6 to the IL-1R1/MyD88 complex. Clearance of both superoxide and H2O2 from within the endosomal compartment significantly abrogated IL-1beta-dependent IKK and NF-kappaB activation. MyD88-dependent endocytosis of IL-1R1 following IL-1beta binding was required for the redox-dependent formation of an active endosomal receptor complex competent for IKK and NF-kappaB activation. Small interfering RNAs to either MyD88 or Rac1 inhibited IL-1beta induction of endosomal superoxide and NF-kappaB activation. However, MyD88 and Rac1 appear to be recruited independently to IL-1R1 following ligand stimulation. In this context, MyD88 binding was required for inducing endocytosis of IL-1R1 following ligand binding, while Rac1 facilitated the recruitment of Nox2 into the endosomal compartment and subsequent redox-dependent recruitment of TRAF6 to the MyD88/IL-1R1 complex. The identification of Nox-active endosomes helps explain how subcellular compartmentalization of redox signals can be used to direct receptor activation from the plasma membrane.


Asunto(s)
Endosomas/metabolismo , Glicoproteínas de Membrana/metabolismo , NADPH Oxidasas/metabolismo , Receptores de Interleucina-1/metabolismo , Factor 6 Asociado a Receptor de TNF/metabolismo , Proteína de Unión al GTP rac1/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Membrana Celular , Endocitosis/efectos de los fármacos , Endosomas/efectos de los fármacos , Endosomas/enzimología , Humanos , Peróxido de Hidrógeno/farmacología , Interleucina-1/farmacología , Glicoproteínas de Membrana/genética , Factor 88 de Diferenciación Mieloide , NADPH Oxidasa 2 , NADPH Oxidasas/genética , FN-kappa B/metabolismo , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/farmacología , Receptores Tipo I de Interleucina-1 , Superóxidos/metabolismo , Células Tumorales Cultivadas , Proteína de Unión al GTP rac1/genética
16.
Front Neurosci ; 13: 579, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31447622

RESUMEN

Minimally-invasive monitoring of electrophysiological neural activities in real-time-that enables quantification of neural functions without a need for invasive craniotomy and the longer time constants of fMRI and PET-presents a very challenging yet significant task for neuroimaging. In this paper, we present in vivo functional PA (fPA) imaging of chemoconvulsant rat seizure model with intact scalp using a fluorescence quenching-based cyanine voltage-sensitive dye (VSD) characterized by a lipid vesicle model mimicking different levels of membrane potential variation. The framework also involves use of a near-infrared VSD delivered through the blood-brain barrier (BBB), opened by pharmacological modulation of adenosine receptor signaling. Our normalized time-frequency analysis presented in vivo VSD response in the seizure group significantly distinguishable from those of the control groups at sub-mm spatial resolution. Electroencephalogram (EEG) recording confirmed the changes of severity and frequency of brain activities, induced by chemoconvulsant seizures of the rat brain. The findings demonstrate that the near-infrared fPA VSD imaging is a promising tool for in vivo recording of brain activities through intact scalp, which would pave a way to its future translation in real time human brain imaging.

17.
Antioxid Redox Signal ; 9(11): 1803-13, 2007 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-17854274

RESUMEN

Rac-dependent NADPH oxidases generate reactive oxygen species used in cell signaling and microbial killing or both. Whereas the mechanisms leading to NADPH oxidase activation are fairly well studied, the mechanisms that control downregulation of this enzyme complex remain unclear. We hypothesized that reactive oxygen species produced by NADPH oxidase may autoregulate the complex by inhibiting Rac activity. To this end, we searched for binding partners of Rac1 and identified a tyrosine-phosphorylated fragment of MKK6 that bound to Rac1 under redox-stress conditions. Constitutively active MKK6 interacted directly with Rac1 in vitro, and this interaction was enhanced when MKK6 was phosphorylated on tyrosine 219. Both Rac1 and Rac2 immunoprecipitated an MKK6 fragment under conditions that elevate cellular peroxide levels in 293 and RAW cells, respectively. Constitutively active and wild-type MKK6 enhanced Rac-GTPase activity in vitro, and their overexpression inhibited PMA-induced NADPH oxidase activation in RAW cells. In contrast, a Y219F mutant of MKK6 only partially enhanced Rac1 GTPase activity, and its overexpression did not alter PMA-induced NADPH oxidase activation in RAW cells. Last, MKK6 deficiency led to an increase in Rac1-GTP levels in brain tissue. Our findings suggest that MKK6 downregulates NADPH oxidase activity by enhancing Rac-GTPase activity.


Asunto(s)
Regulación Enzimológica de la Expresión Génica , MAP Quinasa Quinasa 6/metabolismo , Superóxidos/metabolismo , Proteínas de Unión al GTP rac/metabolismo , Adenoviridae/genética , Animales , Línea Celular , Células Cultivadas , Escherichia coli/genética , Glutatión Transferasa/metabolismo , Peróxido de Hidrógeno/farmacología , MAP Quinasa Quinasa 6/química , MAP Quinasa Quinasa 6/genética , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Ratones , Ratones Transgénicos , Mutación , Oxidantes/farmacología , Fosforilación , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/metabolismo , Acetato de Tetradecanoilforbol/farmacología , Tirosina/metabolismo , Proteínas de Unión al GTP rac/análisis
18.
Neurotherapeutics ; 14(3): 728-733, 2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-28612328

RESUMEN

The weeks/months it takes for traditional antidepressants to act pose an obstacle in the management of depression. Ketamine's prompt and sustained antidepressant effects constitute a major advance. Multiple studies implicate glutamatergic signaling to protein synthesis machinery and synapse formation in ketamine's antidepressant effects. Here we review evidence linking ketamine to glutamate receptor subtypes and protein homeostasis. We describe a signaling cascade wherein nitric oxide drives the formation of a ternary protein complex comprised of glyceraldehyde 3-phosphate dehydrogenase, seven in absentia homolog 1, and Ras homolog enriched in brain downstream of the glutamate N-methyl-D-aspartate receptor. Seven in absentia homolog 1 ubiquitylates and degrades Ras homolog enriched in brain leading to inhibition of mechanistic target of rapamycin. Ketamine inhibits this molecular cascade leading to activation of mechanistic target of rapamycin and, in turn, to antidepressant actions.


Asunto(s)
Antidepresivos/farmacología , Encéfalo/efectos de los fármacos , Ketamina/farmacología , Transducción de Señal/efectos de los fármacos , Animales , Encéfalo/metabolismo , Depresión/metabolismo , Humanos , Óxido Nítrico/metabolismo , Proteína Homóloga de Ras Enriquecida en el Cerebro/efectos de los fármacos , Proteína Homóloga de Ras Enriquecida en el Cerebro/metabolismo , Serina-Treonina Quinasas TOR/efectos de los fármacos , Serina-Treonina Quinasas TOR/metabolismo
19.
Science ; 354(6308)2016 10 07.
Artículo en Inglés | MEDLINE | ID: mdl-27846469

RESUMEN

Inhibition or genetic deletion of poly(ADP-ribose) (PAR) polymerase-1 (PARP-1) is protective against toxic insults in many organ systems. The molecular mechanisms underlying PARP-1-dependent cell death involve release of mitochondrial apoptosis-inducing factor (AIF) and its translocation to the nucleus, which results in chromatinolysis. We identified macrophage migration inhibitory factor (MIF) as a PARP-1-dependent AIF-associated nuclease (PAAN). AIF was required for recruitment of MIF to the nucleus, where MIF cleaves genomic DNA into large fragments. Depletion of MIF, disruption of the AIF-MIF interaction, or mutation of glutamic acid at position 22 in the catalytic nuclease domain blocked MIF nuclease activity and inhibited chromatinolysis, cell death induced by glutamate excitotoxicity, and focal stroke. Inhibition of MIF's nuclease activity is a potential therapeutic target for diseases caused by excessive PARP-1 activation.


Asunto(s)
Factor Inductor de la Apoptosis/metabolismo , Apoptosis , División del ADN , Daño del ADN , ADN de Cadena Simple/metabolismo , Desoxirribonucleasas/metabolismo , Oxidorreductasas Intramoleculares/metabolismo , Factores Inhibidores de la Migración de Macrófagos/metabolismo , Poli(ADP-Ribosa) Polimerasa-1/metabolismo , Transporte Activo de Núcleo Celular , Secuencia de Aminoácidos , Animales , Apoptosis/genética , Factor Inductor de la Apoptosis/genética , Secuencia de Bases , Dominio Catalítico , Núcleo Celular/enzimología , Cromatina/metabolismo , Daño del ADN/genética , Fragmentación del ADN , Desoxirribonucleasas/química , Desoxirribonucleasas/genética , Ácido Glutámico/química , Ácido Glutámico/genética , Ácido Glutámico/toxicidad , Células HeLa , Humanos , Oxidorreductasas Intramoleculares/química , Oxidorreductasas Intramoleculares/genética , Factores Inhibidores de la Migración de Macrófagos/química , Factores Inhibidores de la Migración de Macrófagos/genética , Ratones , Ratones Noqueados , Mitocondrias/enzimología , Mutación , Neuronas/enzimología , Conformación de Ácido Nucleico , Estrés Oxidativo , Accidente Cerebrovascular/enzimología , Accidente Cerebrovascular/genética
20.
CNS Neurol Disord Drug Targets ; 14(6): 757-63, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26022259

RESUMEN

Psychotropic actions of cocaine are generally thought to involve its blockade of monoamine transporters leading to increased synaptic levels of monoamines, especially dopamine. Subsequent intracellular events have been less well characterized. We describe a signaling system wherein lower behavioral stimulant doses of cocaine, as well as higher neurotoxic doses, activate a cascade wherein nitric oxide nitrosylates glyceraldehyde-3-phosphate dehydrogenase (GAPDH) to generate a complex with the ubiquitin-E3-ligase Siah1 which translocates to the nucleus. With lower cocaine doses, nuclear GAPDH augments CREB signaling, while at higher doses p53 signaling is enhanced. The drug CGP3466B very potently blocks GAPDH nitrosylation, hindering both signaling cascades and inhibits both behavioral activating and neurotoxic effects of cocaine. This system affords potentially novel approaches to the therapy of cocaine abuse.


Asunto(s)
Cocaína/farmacología , Inhibidores de Captación de Dopamina/farmacología , Gliceraldehído-3-Fosfato Deshidrogenasas/metabolismo , Óxido Nítrico/metabolismo , Transducción de Señal/efectos de los fármacos , Animales , Humanos , Proteínas Nucleares/metabolismo , Oxepinas/farmacología , Transducción de Señal/fisiología , Ubiquitina-Proteína Ligasas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA